Abstract
Distributed energy resources (DERs), recently introduced into distribution systems, are mainly inverter-based distributed generations (IBDGs), which have different short-circuit behaviors from conventional synchronous-based distributed generations (SBDGs). Hence, this study presents a comprehensive analysis of the short-circuit behaviors of distribution systems with IBDGs, based on sequence networks and superposition, from the perspectives of interconnected transformers, and observes the flow of zero-sequence fault currents with different transformer topologies. Moreover, two- and three-winding transformers with various bank connection types and groundings are investigated. It was concluded that the transformer topology and its grounding influence the fault current contribution in zero-sequence networks, and the high penetration of IBDGs alters the fault current magnitude and phase angles.
Original language | English |
---|---|
Article number | 9781 |
Journal | Sustainability (Switzerland) |
Volume | 14 |
Issue number | 15 |
DOIs | |
Publication status | Published - 2022 Aug |
Keywords
- distributed energy resource
- fault current
- interconnection transformer
- inverter-based distributed generation
- short-circuit analysis
- transformer topology
ASJC Scopus subject areas
- Computer Science (miscellaneous)
- Geography, Planning and Development
- Renewable Energy, Sustainability and the Environment
- Building and Construction
- Environmental Science (miscellaneous)
- Energy Engineering and Power Technology
- Hardware and Architecture
- Computer Networks and Communications
- Management, Monitoring, Policy and Law