Impaired migration in the rostral migratory stream but spared olfactory function after the elimination of programmed cell death in bax knock-out mice

Ryoung Kim Woon, Younghwa Kim, Bokkee Eun, Ok Hee Park, Hyun Kim, Kyungjin Kim, Chang Hwan Park, Sharon Vinsant, Ronald W. Oppenheim, Woong Sun

Research output: Contribution to journalArticle

72 Citations (Scopus)


Rats and mice exhibit neurogenesis of olfactory bulb (OB) interneurons throughout adulthood. To homeostatically maintain stable neuron numbers, it is necessary to continuously remove a subset of OB neurons by programmed cell death (PCD). Here we demonstrate that Bax is critical for the elimination of OB neurons by showing that Bax-KO mice exhibit greatly reduced PCD in the OB. Despite the reduction of PCD, however, proliferation of progenitors and the size of the OB were virtually unaffected in Bax-knock-out (KO) mice. However, reducing PCD by Bax deletion affected the migration of a subset of adult-produced neurons by the disruption of glial tube formation as well as by premature detachment of neuroblasts from the migratory chain. Rescued cells aberrantly remained in the subventricular zone (SVZ)-rostral migratory stream (RMS), in which they differentiated into calretinin+ or GABA-expressing interneurons. Because of the migratory deficit, OB cell homeostasis involving new cell entry and PCD (neuronal turnover) was virtually absent in adult Bax-KO mice. Despite this, Bax-KO mice exhibited normal olfactory behaviors such as odor discrimination and olfactory memory which are thought to be influenced by adult neurogenesis. These results demonstrate that PCD is involved in the regulation of RMS migration and differentiation after OB neurogenesis, but that animals maintain normal olfactory function in the absence of PCD.

Original languageEnglish
Pages (from-to)14392-14403
Number of pages12
JournalJournal of Neuroscience
Issue number52
Publication statusPublished - 2007 Dec 26



  • Bax
  • Behaviors
  • Cell death
  • Migration
  • Neurogenesis
  • Olfactory bulb

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this