Abstract
To realize the high conversion efficiency potential of silicon heterojunction (SHJ) solar cells, it is crucial to minimize the series resistance by reducing the line resistivity and contact resistance of the Ag gridlines formed via low-temperature (<∼240 °C) curing. To reduce the resistivity and contact resistance of the screenprinted Ag gridlines on an indium tin oxide (ITO) layer, two strategies are utilized in this study: 1) the addition of Ag nanoparticles (NPs) into a low-temperature-curing polymer-based Ag paste for the resistivity and 2) the insertion of a thin Ag contact layer by inkjet printing between the screenprinted Ag gridline and the ITO layer for contact resistance. The effectiveness of these approaches was examined by curing the Ag gridlines at various temperatures in the range of 160–220 °C for 10 min. After curing at 200 °C, the low resistivity of 2.2 μΩ·cm and specific contact resistance of 0.55 mΩ·cm2 were obtained by adding 20 wt.% of Ag NPs and inserting the inkjet-printed Ag contact layer, respectively. Microstructural analyses were also performed to correlate the outstanding electrical properties of the Ag gridlines.
Original language | English |
---|---|
Journal | IEEE Journal of Photovoltaics |
DOIs | |
Publication status | Accepted/In press - 2018 May 25 |
Keywords
- Ag electrode
- Conductivity
- Contact resistance
- contact resistance
- Curing
- Electrical resistance measurement
- Indium tin oxide
- low-temperature-curing
- microstructure
- Photovoltaic cells
- screen printing
- Silicon
- silicon heterojunction (SHJ) solar cell
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering