Abstract
The CO response time of SnO2 acicular-particle-type gas sensors was shortened to a great extent using rapid microwave calcination. When SnO2 acicular particles were prepared by the slow heating (heating rate: 4.2 °C/min) of a SnC2O4 precursor to the calcination temperature (500 °C) using a conventional furnace, the 90% response time to 30 ppm CO (t90%(air-to-CO)) was 76 s at a sensing temperature of 450 °C. However, the t90%(air-to-CO) decreased markedly down to 5-27 s when the precursor was heated rapidly (heating rate: 25-100 °C/min) using a microwave furnace. The significant shortening of the response time was attributed to the formation of a mesoporous structure in the SnO2 acicular particles due to rapid gas evolution during the decomposition of the SnC2O4 precursor.
Original language | English |
---|---|
Pages (from-to) | 1034-1039 |
Number of pages | 6 |
Journal | Sensors and Actuators, B: Chemical |
Volume | 123 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2007 May 21 |
Keywords
- Gas Sensors
- Mesoporous structure
- Microwave calcination
- Response time
- SnO acicular particles
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry