TY - GEN
T1 - Improving functional MRI registration using whole-brain functional correlation tensors
AU - Zhou, Yujia
AU - Yap, Pew Thian
AU - Zhang, Han
AU - Zhang, Lichi
AU - Feng, Qianjin
AU - Shen, Dinggang
N1 - Funding Information:
This work was supported in part by NIH grants NS093842 and EB022880.
Publisher Copyright:
© 2017, Springer International Publishing AG.
PY - 2017
Y1 - 2017
N2 - Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically achieved through registration of the corresponding T1-weighted MR images with more structural details. However, accumulating evidence has suggested that such strategy cannot well-align functional regions which are not necessarily confined by the anatomical boundaries defined by the T1-weighted MR images. To mitigate this problem, various registration algorithms based directly on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as features for registration. However, most of the FC-based registration methods usually extract the functional features only from the thin and highly curved cortical grey matter (GM), posing a great challenge in accurately estimating the whole-brain deformation field. In this paper, we demonstrate that the additional useful functional features can be extracted from brain regions beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall functional registration. Specifically, we quantify the local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors (FCTs), in both GM and WM. Functional registration is then performed based on multiple components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method achieves superior functional registration performance, compared with other conventional registration methods.
AB - Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically achieved through registration of the corresponding T1-weighted MR images with more structural details. However, accumulating evidence has suggested that such strategy cannot well-align functional regions which are not necessarily confined by the anatomical boundaries defined by the T1-weighted MR images. To mitigate this problem, various registration algorithms based directly on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as features for registration. However, most of the FC-based registration methods usually extract the functional features only from the thin and highly curved cortical grey matter (GM), posing a great challenge in accurately estimating the whole-brain deformation field. In this paper, we demonstrate that the additional useful functional features can be extracted from brain regions beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall functional registration. Specifically, we quantify the local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors (FCTs), in both GM and WM. Functional registration is then performed based on multiple components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method achieves superior functional registration performance, compared with other conventional registration methods.
KW - LDDMM
KW - Registration
KW - Resting-state fMRI
UR - http://www.scopus.com/inward/record.url?scp=85029360810&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-66182-7_48
DO - 10.1007/978-3-319-66182-7_48
M3 - Conference contribution
AN - SCOPUS:85029360810
SN - 9783319661810
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 416
EP - 423
BT - Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
A2 - Descoteaux, Maxime
A2 - Duchesne, Simon
A2 - Franz, Alfred
A2 - Jannin, Pierre
A2 - Collins, D. Louis
A2 - Maier-Hein, Lena
PB - Springer Verlag
T2 - 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Y2 - 11 September 2017 through 13 September 2017
ER -