TY - JOUR
T1 - Improving the performances of a simulated-moving-bed process for separation of acetoin and 2,3-butanediol by the use of an adsorbent for minimizing the extent of 2,3-butanediol isomerism
AU - Lee, Chung Gi
AU - Jo, Cheol Yeon
AU - Lee, Ki Bong
AU - Mun, Sungyong
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/10/1
Y1 - 2020/10/1
N2 - The applicability of a simulated-moving-bed (SMB) method to the continuous-mode separation between acetoin and 2,3-butanediol (BD), which stemmed from related fermentative processes, has been previously verified. However, its process performances were restricted by the occurrence of a significant discrepancy between the adsorption behaviors of BD isomers (meso-BD and DL-BD) along the SMB columns. To address such concern, this study aimed to explore an effective adsorbent in preventing the problem of BD isomerism along a chromatographic bed, which was then attempted to be utilized in developing a substantially improved SMB for acetoin-BD separation. It was found first that an adsorbent with less pi bonds could be effective in minimizing the extent of BD isomerism and further in improving the performances of the acetoin-BD separation SMB to a marked degree. Using such a properly selected adsorbent, the adsorption parameters of acetoin and BD isomers were determined from multiple-frontal-analysis experimental data and the SMB experimental data respectively. On the basis of their resultant parameter values, the considered SMB was optimally designed and then experimentally tested, which revealed that the designed SMB could allow 44% higher throughput and 44% lower desorbent usage while keeping higher purities and lower losses, compared to the previous SMB. Furthermore, the developed SMB in this study was operated at room temperature, indicating its superiority over the previous SMB operated at 60 °C in energy efficiency.
AB - The applicability of a simulated-moving-bed (SMB) method to the continuous-mode separation between acetoin and 2,3-butanediol (BD), which stemmed from related fermentative processes, has been previously verified. However, its process performances were restricted by the occurrence of a significant discrepancy between the adsorption behaviors of BD isomers (meso-BD and DL-BD) along the SMB columns. To address such concern, this study aimed to explore an effective adsorbent in preventing the problem of BD isomerism along a chromatographic bed, which was then attempted to be utilized in developing a substantially improved SMB for acetoin-BD separation. It was found first that an adsorbent with less pi bonds could be effective in minimizing the extent of BD isomerism and further in improving the performances of the acetoin-BD separation SMB to a marked degree. Using such a properly selected adsorbent, the adsorption parameters of acetoin and BD isomers were determined from multiple-frontal-analysis experimental data and the SMB experimental data respectively. On the basis of their resultant parameter values, the considered SMB was optimally designed and then experimentally tested, which revealed that the designed SMB could allow 44% higher throughput and 44% lower desorbent usage while keeping higher purities and lower losses, compared to the previous SMB. Furthermore, the developed SMB in this study was operated at room temperature, indicating its superiority over the previous SMB operated at 60 °C in energy efficiency.
KW - 2,3-Butanediol isomerism
KW - Acetoin
KW - Amberchrom-CG71C
KW - Performance improvement
KW - Simulated moving bed
UR - http://www.scopus.com/inward/record.url?scp=85084350150&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2020.116922
DO - 10.1016/j.seppur.2020.116922
M3 - Article
AN - SCOPUS:85084350150
SN - 1383-5866
VL - 248
JO - Separation and Purification Technology
JF - Separation and Purification Technology
M1 - 116922
ER -