Influence of blade pass frequency vibrations on MCSA-based rotor fault detection of induction motors

Yonghyun Park, Myung Jeong, Sang Bin Lee, Jose Alfonso Antonino-Daviu, Mike Teska

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Motor current signature analysis (MCSA) has recently become widespread in industry for on-line detection of rotor cage faults in induction motors for preventing forced outages. Although it can provide low cost, remote monitoring of rotor faults, cases of false indications have been reported, where the causes of some false indications are still unknown. It is shown for the first time in this work that high-amplitude blade pass frequency (BPF) vibrations produced in pumps, fans, or compressors can cause false rotor fault indications, if the number of motor poles is an integer multiple of the number of blades. The influence of BPF vibration on MCSA based rotor fault detection is analyzed, and it is shown that the interaction between BPF vibration and rotor faults can produce false positive and negative fault indications. Alternative test methods capable of separating the influence of the BPF vibration and rotor faults are suggested for avoiding false MCSA alarms. The claims made in the paper are verified experimentally on a custom-built 380 V induction motor-centrifugal pump system setup.

Original languageEnglish
Title of host publicationECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509007370
DOIs
Publication statusPublished - 2017 Feb 13
Event2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016 - Milwaukee, United States
Duration: 2016 Sep 182016 Sep 22

Other

Other2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016
CountryUnited States
CityMilwaukee
Period16/9/1816/9/22

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Energy Engineering and Power Technology
  • Control and Optimization

Fingerprint Dive into the research topics of 'Influence of blade pass frequency vibrations on MCSA-based rotor fault detection of induction motors'. Together they form a unique fingerprint.

  • Cite this

    Park, Y., Jeong, M., Lee, S. B., Antonino-Daviu, J. A., & Teska, M. (2017). Influence of blade pass frequency vibrations on MCSA-based rotor fault detection of induction motors. In ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings [7855199] Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ECCE.2016.7855199