Influence of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of polycarbonate/poly(lactic acid)/ LA-g-MWCNT composites

Myung Geun Jang, Yun Kyun Lee, Woo Nyon Kim

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

The effects of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of the polycarbonate (PC)/poly(lactic acid) (PLA)/LA-g-MWCNT composite were studied. To increase dispersion of the conductive filler in the PC/PLA (70/30) blend, chemically-modified MWCNT, which is LA-g-MWCNT, was used as a compatibilizer between the conductive filler and polymers. For the PC/PLA/LA-g-MWCNT composite, the increased values of the electrical conductivity, electromagnetic interference shielding effectiveness, and complex viscosity were observed compared to those of PC/PLA/MWCNT composite. The results suggested that the increased dispersion of the LA-g-MWCNT in the PC/PLA (70/30) blend is caused by increased connectivity of the MWCNT-MWCNT network structure of the composite. The interfacial tension of the PLA/ MWCNT composite was lower than that of the PC/MWCNT composite. The lower value of interfacial tension of the PLA/MWCNT composite affected the dispersion of the MWCNT in the PLA phase (dispersed phase) more than in the PC phase (continuous phase). After hydrolysis, the PC/PLA/LA-g-MWCNT composite showed higher electrical conductivity than the PC/PLA/MWCNT composites. As a result, it is suggested that the increased dispersion of the LA-g-MWCNT in the PC/PLA blend has affected the increase in the electrical conductivity and lowering of the hydrolytic degradation of the PC/PLA/LA-g-MWCNT composite compared to the PC/PLA/MWCNT composite.[Figure not available: see fulltext.]

Original languageEnglish
Pages (from-to)916-923
Number of pages8
JournalMacromolecular Research
Volume23
Issue number10
DOIs
Publication statusPublished - 2015 Oct 1

Fingerprint

polycarbonate
Carbon Nanotubes
Lactic acid
Polycarbonates
Lactic Acid
Carbon nanotubes
Composite materials
poly(lactic acid)
Surface tension
Fillers

Keywords

  • carbon nanotube
  • electrical conductivity
  • poly(lactic acid)
  • polymer blend
  • polymer composite
  • rheology

ASJC Scopus subject areas

  • Organic Chemistry
  • Materials Chemistry
  • Polymers and Plastics
  • Chemical Engineering(all)

Cite this

@article{c68c12b0b6b947edaa42cb87cfaa218a,
title = "Influence of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of polycarbonate/poly(lactic acid)/ LA-g-MWCNT composites",
abstract = "The effects of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of the polycarbonate (PC)/poly(lactic acid) (PLA)/LA-g-MWCNT composite were studied. To increase dispersion of the conductive filler in the PC/PLA (70/30) blend, chemically-modified MWCNT, which is LA-g-MWCNT, was used as a compatibilizer between the conductive filler and polymers. For the PC/PLA/LA-g-MWCNT composite, the increased values of the electrical conductivity, electromagnetic interference shielding effectiveness, and complex viscosity were observed compared to those of PC/PLA/MWCNT composite. The results suggested that the increased dispersion of the LA-g-MWCNT in the PC/PLA (70/30) blend is caused by increased connectivity of the MWCNT-MWCNT network structure of the composite. The interfacial tension of the PLA/ MWCNT composite was lower than that of the PC/MWCNT composite. The lower value of interfacial tension of the PLA/MWCNT composite affected the dispersion of the MWCNT in the PLA phase (dispersed phase) more than in the PC phase (continuous phase). After hydrolysis, the PC/PLA/LA-g-MWCNT composite showed higher electrical conductivity than the PC/PLA/MWCNT composites. As a result, it is suggested that the increased dispersion of the LA-g-MWCNT in the PC/PLA blend has affected the increase in the electrical conductivity and lowering of the hydrolytic degradation of the PC/PLA/LA-g-MWCNT composite compared to the PC/PLA/MWCNT composite.[Figure not available: see fulltext.]",
keywords = "carbon nanotube, electrical conductivity, poly(lactic acid), polymer blend, polymer composite, rheology",
author = "Jang, {Myung Geun} and Lee, {Yun Kyun} and Kim, {Woo Nyon}",
year = "2015",
month = "10",
day = "1",
doi = "10.1007/s13233-015-3129-7",
language = "English",
volume = "23",
pages = "916--923",
journal = "Macromolecular Research",
issn = "1598-5032",
publisher = "Polymer Society of Korea",
number = "10",

}

TY - JOUR

T1 - Influence of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of polycarbonate/poly(lactic acid)/ LA-g-MWCNT composites

AU - Jang, Myung Geun

AU - Lee, Yun Kyun

AU - Kim, Woo Nyon

PY - 2015/10/1

Y1 - 2015/10/1

N2 - The effects of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of the polycarbonate (PC)/poly(lactic acid) (PLA)/LA-g-MWCNT composite were studied. To increase dispersion of the conductive filler in the PC/PLA (70/30) blend, chemically-modified MWCNT, which is LA-g-MWCNT, was used as a compatibilizer between the conductive filler and polymers. For the PC/PLA/LA-g-MWCNT composite, the increased values of the electrical conductivity, electromagnetic interference shielding effectiveness, and complex viscosity were observed compared to those of PC/PLA/MWCNT composite. The results suggested that the increased dispersion of the LA-g-MWCNT in the PC/PLA (70/30) blend is caused by increased connectivity of the MWCNT-MWCNT network structure of the composite. The interfacial tension of the PLA/ MWCNT composite was lower than that of the PC/MWCNT composite. The lower value of interfacial tension of the PLA/MWCNT composite affected the dispersion of the MWCNT in the PLA phase (dispersed phase) more than in the PC phase (continuous phase). After hydrolysis, the PC/PLA/LA-g-MWCNT composite showed higher electrical conductivity than the PC/PLA/MWCNT composites. As a result, it is suggested that the increased dispersion of the LA-g-MWCNT in the PC/PLA blend has affected the increase in the electrical conductivity and lowering of the hydrolytic degradation of the PC/PLA/LA-g-MWCNT composite compared to the PC/PLA/MWCNT composite.[Figure not available: see fulltext.]

AB - The effects of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of the polycarbonate (PC)/poly(lactic acid) (PLA)/LA-g-MWCNT composite were studied. To increase dispersion of the conductive filler in the PC/PLA (70/30) blend, chemically-modified MWCNT, which is LA-g-MWCNT, was used as a compatibilizer between the conductive filler and polymers. For the PC/PLA/LA-g-MWCNT composite, the increased values of the electrical conductivity, electromagnetic interference shielding effectiveness, and complex viscosity were observed compared to those of PC/PLA/MWCNT composite. The results suggested that the increased dispersion of the LA-g-MWCNT in the PC/PLA (70/30) blend is caused by increased connectivity of the MWCNT-MWCNT network structure of the composite. The interfacial tension of the PLA/ MWCNT composite was lower than that of the PC/MWCNT composite. The lower value of interfacial tension of the PLA/MWCNT composite affected the dispersion of the MWCNT in the PLA phase (dispersed phase) more than in the PC phase (continuous phase). After hydrolysis, the PC/PLA/LA-g-MWCNT composite showed higher electrical conductivity than the PC/PLA/MWCNT composites. As a result, it is suggested that the increased dispersion of the LA-g-MWCNT in the PC/PLA blend has affected the increase in the electrical conductivity and lowering of the hydrolytic degradation of the PC/PLA/LA-g-MWCNT composite compared to the PC/PLA/MWCNT composite.[Figure not available: see fulltext.]

KW - carbon nanotube

KW - electrical conductivity

KW - poly(lactic acid)

KW - polymer blend

KW - polymer composite

KW - rheology

UR - http://www.scopus.com/inward/record.url?scp=84945277070&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84945277070&partnerID=8YFLogxK

U2 - 10.1007/s13233-015-3129-7

DO - 10.1007/s13233-015-3129-7

M3 - Article

AN - SCOPUS:84945277070

VL - 23

SP - 916

EP - 923

JO - Macromolecular Research

JF - Macromolecular Research

SN - 1598-5032

IS - 10

ER -