Abstract
Background/purpose: The skin plays an important role as a protective barrier against toxic environments and also is a route of drug administration. In spite of evidence for and interest in the skin penetration of nanoparticles, no study has examined the effect of nanoparticle surface charge on percutaneous absorption. In this study, we investigated the effect of surface charges of gold nanorods (GNs) on skin penetration. Methods: Using transmission electron microscopy (TEM) and image analysis, we quantitatively measured the ability of GNs to penetrate the skin. Results: Our results showed that the area density of the electron-dense dots of GNs, which penetrated into the stratum corneum, significantly increased for negatively charged GNs compared to those with a positive charge (P < 0.01). To investigate the percutanoues absorption of charged GNs, in vitro skin permeation studies were carried out using a Franz-type diffusion cell (FDC). The penetration of GNs through the skin was quantified by inductively coupled plasma mass spectrometry. Consistent with TEM observations, our penetration study using an FDC also revealed that negative particles were frequently detected in samples of receptor fluid at 48 h after exposure (P < 0.01). Conclusion: Together our results showed that anionic GNs penetrate skin better than cationic GNs.
Original language | English |
---|---|
Pages (from-to) | e390-e396 |
Journal | Skin Research and Technology |
Volume | 19 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2013 Feb |
Keywords
- Gold nanorods
- Human skin equivalent model
- Polyelectrolytes
- Skin penetration
- Surface charge
ASJC Scopus subject areas
- Dermatology