TY - JOUR
T1 - Insulin-like growth factor II activates phosphatidylinositol 3-kinase-protooncogenic protein kinase 1 and mitogen-activated protein kinase cell signaling pathways, and stimulates migration of ovine trophectoderm cells
AU - Kim, Jinyoung
AU - Song, Gwonhwa
AU - Gao, Haijun
AU - Farmer, Jennifer L.
AU - Satterfield, M. Carey
AU - Burghardt, Robert C.
AU - Wu, Guoyao
AU - Johnson, Greg A.
AU - Spencer, Thomas E.
AU - Bazer, Fuller W.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2008/6
Y1 - 2008/6
N2 - IGF-II, a potent stimulator of cellular proliferation, differentiation, and development, regulates uterine function and conceptus growth in several species. In situ hybridization analyses found that IGF-II mRNA was most abundant in the caruncular endometrial stroma of both cyclical and pregnant ewes. In the intercaruncular endometrium, IGF-II mRNA transitioned from stroma to luminal epithelium between d 14 and 20 of pregnancy. IGF-II mRNA was present in all cells of the conceptus but was particularly abundant in the yolk sac. Immunohistochemical analyses revealed that phosphorylated (p)-protooncogenic protein kinase 1, p-ribosomal protein S6 kinase, p-ERK1/2, and p-P38 MAPK proteins were present at low levels in a majority of endometrial cells but were most abundant in the nuclei of endometrial luminal epithelium and conceptus trophectoderm of pregnant ewes. In mononuclear trophectoderm cells isolated from d-15 conceptuses, IGF-II increased the abundance of p-pyruvate dehydrogenase kinase 1, p-protooncogenic protein kinase 1, p-glycogen synthase kinase 3B, p-FK506 binding protein 12-rapamycin associated protein 1, and p-ribosomal protein S6 kinase protein within 15 min, and the increase was maintained for 90 min. IGF-II also elicited a rapid increase in p-ERK1/2 and p-P38 MAPK proteins that was maximal at 15 or 30 min posttreatment. Moreover, IGF-II increased migration of trophectoderm cells. Collectively, these results support the hypothesis that IGF-II coordinately activates multiple cell signaling pathways critical to survival, growth, and differentiation of the ovine conceptus during early pregnancy.
AB - IGF-II, a potent stimulator of cellular proliferation, differentiation, and development, regulates uterine function and conceptus growth in several species. In situ hybridization analyses found that IGF-II mRNA was most abundant in the caruncular endometrial stroma of both cyclical and pregnant ewes. In the intercaruncular endometrium, IGF-II mRNA transitioned from stroma to luminal epithelium between d 14 and 20 of pregnancy. IGF-II mRNA was present in all cells of the conceptus but was particularly abundant in the yolk sac. Immunohistochemical analyses revealed that phosphorylated (p)-protooncogenic protein kinase 1, p-ribosomal protein S6 kinase, p-ERK1/2, and p-P38 MAPK proteins were present at low levels in a majority of endometrial cells but were most abundant in the nuclei of endometrial luminal epithelium and conceptus trophectoderm of pregnant ewes. In mononuclear trophectoderm cells isolated from d-15 conceptuses, IGF-II increased the abundance of p-pyruvate dehydrogenase kinase 1, p-protooncogenic protein kinase 1, p-glycogen synthase kinase 3B, p-FK506 binding protein 12-rapamycin associated protein 1, and p-ribosomal protein S6 kinase protein within 15 min, and the increase was maintained for 90 min. IGF-II also elicited a rapid increase in p-ERK1/2 and p-P38 MAPK proteins that was maximal at 15 or 30 min posttreatment. Moreover, IGF-II increased migration of trophectoderm cells. Collectively, these results support the hypothesis that IGF-II coordinately activates multiple cell signaling pathways critical to survival, growth, and differentiation of the ovine conceptus during early pregnancy.
UR - http://www.scopus.com/inward/record.url?scp=44249116392&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44249116392&partnerID=8YFLogxK
U2 - 10.1210/en.2007-1367
DO - 10.1210/en.2007-1367
M3 - Article
C2 - 18339715
AN - SCOPUS:44249116392
VL - 149
SP - 3085
EP - 3094
JO - Endocrinology
JF - Endocrinology
SN - 0013-7227
IS - 6
ER -