Inter-modality relationship constrained multi-task feature selection for AD/MCI classification

Feng Liu, Chong Yaw Wee, Huafu Chen, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In conventional multi-modality based classification framework, feature selection is typically performed separately for each individual modality, ignoring potential strong inter-modality relationship of the same subject. To extract this inter-modality relationship, L2,1 norm-based multi-task learning approach can be used to jointly select common features from different modalities. Unfortunately, this approach overlooks different yet complementary information conveyed by different modalities. To address this issue, we propose a novel multi-task feature selection method to effectively preserve the complementary information between different modalities, improving brain disease classification accuracy. Specifically, a new constraint is introduced to preserve the inter-modality relationship by treating the feature selection procedure of each modality as a task. This constraint preserves distance between feature vectors from different modalities after projection to low dimensional feature space. We evaluated our method on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and obtained significant improvement on Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) classification compared to state-of-the-art methods.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Pages308-315
Number of pages8
Volume8149 LNCS
EditionPART 1
DOIs
Publication statusPublished - 2013 Oct 23
Externally publishedYes
Event16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013 - Nagoya, Japan
Duration: 2013 Sep 222013 Sep 26

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 1
Volume8149 LNCS
ISSN (Print)03029743
ISSN (Electronic)16113349

Other

Other16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013
CountryJapan
CityNagoya
Period13/9/2213/9/26

    Fingerprint

Keywords

  • Alzheimer's Disease
  • Multi-kernel support vector machine
  • Multi-modality
  • Multi-task learning
  • Sparse representation

ASJC Scopus subject areas

  • Computer Science(all)
  • Theoretical Computer Science

Cite this

Liu, F., Wee, C. Y., Chen, H., & Shen, D. (2013). Inter-modality relationship constrained multi-task feature selection for AD/MCI classification. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (PART 1 ed., Vol. 8149 LNCS, pp. 308-315). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 8149 LNCS, No. PART 1). https://doi.org/10.1007/978-3-642-40811-3_39