Interactive image segmentation via backpropagating refinement scheme

Won Dong Jang, Chang Su Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)

Abstract

An interactive image segmentation algorithm, which accepts user-annotations about a target object and the background, is proposed in this work. We convert user-annotations into interaction maps by measuring distances of each pixel to the annotated locations. Then, we perform the forward pass in a convolutional neural network, which outputs an initial segmentation map. However, the user-annotated locations can be mislabeled in the initial result. Therefore, we develop the backpropagating refinement scheme (BRS), which corrects the mislabeled pixels. Experimental results demonstrate that the proposed algorithm outperforms the conventional algorithms on four challenging datasets. Furthermore, we demonstrate the generality and applicability of BRS in other computer vision tasks, by transforming existing convolutional neural networks into user-interactive ones.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages5292-5301
Number of pages10
ISBN (Electronic)9781728132938
DOIs
Publication statusPublished - 2019 Jun
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: 2019 Jun 162019 Jun 20

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
CountryUnited States
CityLong Beach
Period19/6/1619/6/20

Keywords

  • Grouping and Shape
  • Segmentation

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Interactive image segmentation via backpropagating refinement scheme'. Together they form a unique fingerprint.

Cite this