Abstract
In the silicon fusion bonding (SFB) process, the influence of post-annealing atmospheres on the micro-gap existing at the Si-Si bonding interface was investigated with the observation of ultrasonic images, angle lap-stained junctions and cross section SEM morphologies. Additionally, the bonding strength and the electrical properties of diodes were compared after annealing processes at 100/dg fo 10 s to 10 h in wet O2, dry O2 and N2 atmospheres. Our results show that a significant saving of annealing time necessary to eliminate the non-contact micro-gap region having a width of ≤ 0.1 μm can be obtained if the hydrogenbonded wafer pair is pre-stabilized and post-annealed in wet O2 (95°C water bubbling) rather than in a dry O2 or N2 atmosphere. Based on the above result, we propose that the stabilizing and annealing step in highlt oxidizing atmosphere has an important role in the oxide filling-up phenomenon between wafer and wafer gap, in addition to the well-known mechanism of wafer plastic deformation at high temperature followed by solid-state diffusion of Si and O atoms.
Original language | English |
---|---|
Pages (from-to) | 1168-1174 |
Number of pages | 7 |
Journal | Journal of Materials Science |
Volume | 28 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1993 Mar |
Externally published | Yes |
ASJC Scopus subject areas
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering