Abstract
In this study, ZrO2 is introduced in a new form to reduce sintering and enhance the cyclic stability of CaO-based sorbents. Such a material has potential for high-temperature CO2 capture applications. Two Zr-modified CaO materials having a Ca/Zr molar ratio of 30 are prepared using the solid-state and citrate sol-gel methods. The solid-state method yields a physical mixture of CaO and ZrO2, while the citrate sol-gel method induces chemical bonding between ZrO2 and the CaO surface to form CaZrO3. The CO2 sorption uptake was significantly increased in both unmodified CaO and ZrO2-containing CaO [77.3 wt% (17.6 mol kg−1) and 73.2 wt% (16.6 mol kg−1), respectively, at 650 °C and 1 bar] when the citrate sol-gel method was used. The CaO having the chemically bonded ZrO2 reveals significantly enhanced cyclic stabilities, with an extremely high CO2 sorption uptake of 70.5 wt% (16.0 mol kg−1) on average during 10 cycles. On the other hand, the CaO containing the physically mixed ZrO2 reveals an average cyclic CO2 sorption uptake of only 37.2 wt% (8.5 mol kg−1). The chemically bonded ZrO2 is expected to be well scattered on the CaO surface and effectively cover the sorbent, resulting in the reduction of thermal sintering. In addition to cyclic stability, CO2 sorption kinetics of CaO-based sorbents can be enhanced through the citrate sol-gel method, which is resulted from the significantly reduced size of CaO particles.
Language | English |
---|---|
Pages | 850-857 |
Number of pages | 8 |
Journal | Chemical Engineering Journal |
Volume | 355 |
DOIs | |
Publication status | Published - 2019 Jan 1 |
Fingerprint
Keywords
- CaO
- CO sorption
- Cyclic stability
- Sorbent
- ZrO
ASJC Scopus subject areas
- Chemistry(all)
- Environmental Chemistry
- Chemical Engineering(all)
- Industrial and Manufacturing Engineering
Cite this
Introduction of chemically bonded zirconium oxide in CaO-based high-temperature CO2 sorbents for enhanced cyclic sorption. / Yoon, Hyung Jin; Lee, Ki Bong.
In: Chemical Engineering Journal, Vol. 355, 01.01.2019, p. 850-857.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Introduction of chemically bonded zirconium oxide in CaO-based high-temperature CO2 sorbents for enhanced cyclic sorption
AU - Yoon, Hyung Jin
AU - Lee, Ki Bong
PY - 2019/1/1
Y1 - 2019/1/1
N2 - In this study, ZrO2 is introduced in a new form to reduce sintering and enhance the cyclic stability of CaO-based sorbents. Such a material has potential for high-temperature CO2 capture applications. Two Zr-modified CaO materials having a Ca/Zr molar ratio of 30 are prepared using the solid-state and citrate sol-gel methods. The solid-state method yields a physical mixture of CaO and ZrO2, while the citrate sol-gel method induces chemical bonding between ZrO2 and the CaO surface to form CaZrO3. The CO2 sorption uptake was significantly increased in both unmodified CaO and ZrO2-containing CaO [77.3 wt% (17.6 mol kg−1) and 73.2 wt% (16.6 mol kg−1), respectively, at 650 °C and 1 bar] when the citrate sol-gel method was used. The CaO having the chemically bonded ZrO2 reveals significantly enhanced cyclic stabilities, with an extremely high CO2 sorption uptake of 70.5 wt% (16.0 mol kg−1) on average during 10 cycles. On the other hand, the CaO containing the physically mixed ZrO2 reveals an average cyclic CO2 sorption uptake of only 37.2 wt% (8.5 mol kg−1). The chemically bonded ZrO2 is expected to be well scattered on the CaO surface and effectively cover the sorbent, resulting in the reduction of thermal sintering. In addition to cyclic stability, CO2 sorption kinetics of CaO-based sorbents can be enhanced through the citrate sol-gel method, which is resulted from the significantly reduced size of CaO particles.
AB - In this study, ZrO2 is introduced in a new form to reduce sintering and enhance the cyclic stability of CaO-based sorbents. Such a material has potential for high-temperature CO2 capture applications. Two Zr-modified CaO materials having a Ca/Zr molar ratio of 30 are prepared using the solid-state and citrate sol-gel methods. The solid-state method yields a physical mixture of CaO and ZrO2, while the citrate sol-gel method induces chemical bonding between ZrO2 and the CaO surface to form CaZrO3. The CO2 sorption uptake was significantly increased in both unmodified CaO and ZrO2-containing CaO [77.3 wt% (17.6 mol kg−1) and 73.2 wt% (16.6 mol kg−1), respectively, at 650 °C and 1 bar] when the citrate sol-gel method was used. The CaO having the chemically bonded ZrO2 reveals significantly enhanced cyclic stabilities, with an extremely high CO2 sorption uptake of 70.5 wt% (16.0 mol kg−1) on average during 10 cycles. On the other hand, the CaO containing the physically mixed ZrO2 reveals an average cyclic CO2 sorption uptake of only 37.2 wt% (8.5 mol kg−1). The chemically bonded ZrO2 is expected to be well scattered on the CaO surface and effectively cover the sorbent, resulting in the reduction of thermal sintering. In addition to cyclic stability, CO2 sorption kinetics of CaO-based sorbents can be enhanced through the citrate sol-gel method, which is resulted from the significantly reduced size of CaO particles.
KW - CaO
KW - CO sorption
KW - Cyclic stability
KW - Sorbent
KW - ZrO
UR - http://www.scopus.com/inward/record.url?scp=85052747099&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052747099&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2018.08.148
DO - 10.1016/j.cej.2018.08.148
M3 - Article
VL - 355
SP - 850
EP - 857
JO - Chemical Engineering Journal
T2 - Chemical Engineering Journal
JF - Chemical Engineering Journal
SN - 1385-8947
ER -