Investigation of precipitation sequence during creep in 2.25Cr-1Mo steel

Dong Ju Chu, Han Yeol Kim, Joonho Lee, Woo Sang Jung

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Precipitate evolutions of 2.25Cr-1Mo heat-resistant steel during creep, under stress ranges of 30–300 MPa at 500–650 °C, were investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) equipped with energy dispersive spectroscopy (EDS). As-tempered microstructure was composed of ferrite and pearlite. Major precipitates in the pearlite region were identified as M3C, M7C3 and M23C6 (M = Fe, Cr, Mo) carbides. It was found that the precipitation sequence was changed according to the creep exposure temperatures and times. The composition of the carbide was shifted to the Cr-rich side as the creep exposure time at 550 °C or lower increases without changing the ferrite and pearlite structures. On the other hand, M2C was formed in an early stage of creep at 600 °C. The amount of M2C was decreased and M6C was newly precipitated after a long time creep exposure at 600 °C or higher. The amount of M3C decreased with increase in exposure time and fully disappeared even after a very short time creep exposure at temperatures higher than 600 °C. The overall precipitation sequence in the 2.25Cr-1Mo steel during creep was found to be M3C, M7C3, M23C6 → M3C, M7C3, M23C6, M2C → M7C3, M23C6, M6C. It was considered that the slope change in Larson-Miller Parameter (LMP) plot was attributed to the formation of Mo-rich M2C and dissolution of M7C3 precipitates during creep in the 2.25Cr-1Mo steel.

Original languageEnglish
Article number110328
JournalMaterials Characterization
Volume164
DOIs
Publication statusPublished - 2020 Jun

Keywords

  • 2.25Cr-1Mo steel
  • Carbides
  • Carbon replica
  • Creep
  • Precipitation sequence
  • TEM

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Investigation of precipitation sequence during creep in 2.25Cr-1Mo steel'. Together they form a unique fingerprint.

Cite this