Investigation of vertically trapped charge locations in Cr-doped-SrTiO 3-based charge trapping memory devices

Yujeong Seo, Min Yeong Song, Ho Myoung An, Yeon Soo Kim, Bae Ho Park, Tae Geun Kim

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


In this paper, vertically trapped charge location is investigated to understand the carrier-transport dynamics in chromium-doped strontium titanate (Cr-SrTiO 3 (STO))-based charge trapping memory devices using a transient analysis method. The vertical location of trapped charges is found to move from the Cr-SrTiO 3/Si 3N 4 interface to the bulk region of Si 3N 4 with an increasing of the electric field, and, particularly, available trap sites are limited at the Cr-SrTiO 3/Si 3N 4 interface by hole injection from the Si substrate into the Si 3N 4 layer at a high electric field (E OX > 7 MV/cm). In addition, some of these charges passing across the SiO 2 (OX) layer generate many Si-SiO 2 interface traps (D it: 1.58 × 10 12 cm -2 eV -1) that may degrade the device. However, the trapping efficiency can be improved by using sufficiently thick ( > 10 nm) bottom layers and by preventing direct hole tunneling and thereby, reducing the interface trap density.

Original languageEnglish
Article number074505
JournalJournal of Applied Physics
Issue number7
Publication statusPublished - 2012 Oct 1

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'Investigation of vertically trapped charge locations in Cr-doped-SrTiO <sub>3</sub>-based charge trapping memory devices'. Together they form a unique fingerprint.

Cite this