Abstract
In this paper, vertically trapped charge location is investigated to understand the carrier-transport dynamics in chromium-doped strontium titanate (Cr-SrTiO 3 (STO))-based charge trapping memory devices using a transient analysis method. The vertical location of trapped charges is found to move from the Cr-SrTiO 3/Si 3N 4 interface to the bulk region of Si 3N 4 with an increasing of the electric field, and, particularly, available trap sites are limited at the Cr-SrTiO 3/Si 3N 4 interface by hole injection from the Si substrate into the Si 3N 4 layer at a high electric field (E OX > 7 MV/cm). In addition, some of these charges passing across the SiO 2 (OX) layer generate many Si-SiO 2 interface traps (D it: 1.58 × 10 12 cm -2 eV -1) that may degrade the device. However, the trapping efficiency can be improved by using sufficiently thick ( > 10 nm) bottom layers and by preventing direct hole tunneling and thereby, reducing the interface trap density.
Original language | English |
---|---|
Article number | 074505 |
Journal | Journal of Applied Physics |
Volume | 112 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2012 Oct 1 |
ASJC Scopus subject areas
- Physics and Astronomy(all)