Ionic-Activated Chemiresistive Gas Sensors for Room-Temperature Operation

Young Geun Song, Young Seok Shim, Jun Min Suh, Myoung Sub Noh, Gwang Su Kim, Kyoung Soon Choi, Beomgyun Jeong, Sangtae Kim, Ho Won Jang, Byeong Kwon Ju, Chong Yun Kang

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)


The development of high performance gas sensors that operate at room temperature has attracted considerable attention. Unfortunately, the conventional mechanism of chemiresistive sensors is restricted at room temperature by insufficient reaction energy with target molecules. Herein, novel strategy for room temperature gas sensors is reported using an ionic-activated sensing mechanism. The investigation reveals that a hydroxide layer is developed by the applied voltages on the SnO2 surface in the presence of humidity, leading to increased electrical conductivity. Surprisingly, the experimental results indicate ideal sensing behavior at room temperature for NO2 detection with sub-parts-per-trillion (132.3 ppt) detection and fast recovery (25.7 s) to 5 ppm NO2 under humid conditions. The ionic-activated sensing mechanism is proposed as a cascade process involving the formation of ionic conduction, reaction with a target gas, and demonstrates the novelty of the approach. It is believed that the results presented will open new pathways as a promising method for room temperature gas sensors.

Original languageEnglish
Article number1902065
Issue number40
Publication statusPublished - 2019 Oct 1


  • NO
  • gas sensors
  • humidity
  • ionic conduction
  • room temperature

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Chemistry(all)
  • Materials Science(all)


Dive into the research topics of 'Ionic-Activated Chemiresistive Gas Sensors for Room-Temperature Operation'. Together they form a unique fingerprint.

Cite this