Iridium-Based Multimetallic Nanoframe@Nanoframe Structure: An Efficient and Robust Electrocatalyst toward Oxygen Evolution Reaction

Jongsik Park, Young Jin Sa, Hionsuck Baik, Taehyun Kwon, Sang Hoon Joo, Kwangyeol Lee

Research output: Contribution to journalArticle

86 Citations (Scopus)

Abstract

Nanoframe electrocatalysts have attracted great interest due to their inherently high active surface area per a given mass. Although recent progress has enabled the preparation of single nanoframe structures with a variety of morphologies, more complex nanoframe structures such as a double-layered nanoframe have not yet been realized. Herein, we report a rational synthetic strategy for a structurally robust Ir-based multimetallic double-layered nanoframe (DNF) structure, nanoframe@nanoframe. By leveraging the differing kinetics of dual Ir precursors and dual transition metal (Ni and Cu) precursors, a core-shell-type alloy@alloy structure could be generated in a simple one-step synthesis, which was subsequently transformed into a multimetallic IrNiCu DNF with a rhombic dodecahedral morphology via selective etching. The use of single Ir precursor yielded single nanoframe structures, highlighting the importance of employing dual Ir precursors. In addition, the structure of Ir-based nanocrystals could be further controlled to DNF with octahedral morphology and CuNi@Ir core-shell structures via a simple tuning of experimental factors. The IrNiCu DNF exhibited high electrocatalytic activity for oxygen evolution reaction (OER) in acidic media, which is better than Ir/C catalyst. Furthermore, IrNiCu DNF demonstrated excellent durability for OER, which could be attributed to the frame structure that prevents the growth and agglomeration of particles as well as in situ formation of robust rutile IrO2 phase during prolonged operation.

Original languageEnglish
Pages (from-to)5500-5509
Number of pages10
JournalACS Nano
Volume11
Issue number6
DOIs
Publication statusPublished - 2017 Jun 27

Keywords

  • electrocatalysis
  • iridium-based nanocrystal
  • kinetic control
  • nanoframe
  • oxygen evolution reaction
  • ternary alloy

ASJC Scopus subject areas

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Iridium-Based Multimetallic Nanoframe@Nanoframe Structure: An Efficient and Robust Electrocatalyst toward Oxygen Evolution Reaction'. Together they form a unique fingerprint.

  • Cite this