Isolation and characterization of multipotent mesenchymal stem cells in nasal polyps

Jung Sun Cho, Joo Hoo Park, Ju Hyung Kang, Sung Eun Kim, Il Ho Park, Heung Man Lee

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Mesenchymal stem cells (MSCs) are multipotent progenitor cells in adult tissues. This study aimed to investigate nasal polyp (NP) tissues as a potential new source of multipotent MSCs that maintain their stemness and differentiation potential following multiple rounds of passaging. NP tissues were obtained from 10 patients during endoscopic sinus surgery. After isolating and culturing NP-derived MSCs (npMSCs), the expression levels of the surface markers CD34, CD44, CD45, CD73, CD90, CD105, CD106, CD146 and human leukocyte antigens-class II DR antigen (HLA-DR) were estimated by flow cytometry. NpMSCs were cultured in chondrogenic, osteogenic, adipogenic, or neurogenic differentiation medium. The differentiation potential of npMSCs was analyzed by Alcian blue, alizarin red S, oil red O, and immunocytochemical staining and reverse transcription-polymerase chain reaction. The clonogenic potential of npMSCs was measured using a colony-forming unit assay. Cell proliferation of npMSCs was measured using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Flow cytometry analysis revealed that npMSCs were negative for hematopoietic lineage markers (CD34, CD45, and HLA-DR) and positive for MSC markers (CD44, CD73, CD90, and CD105). The npMSCs differentiated into osteogenic, adipogenic, chondrogenic, and neurogenic lineages, respectively. Chondrogenically differentiated npMSCs were stained with Alcian blue, osteogenically differentiated npMSCs were stained with alizarin red S, and adipogenically differentiated npMSCs were stained with oil red O. Real-time polymerase chain reaction results showed that the differentiated npMSCs expressed the respective differentiation markers (Sox 9 and Col2A for chondrogenesis, Runx2 and osteocalcin for osteogenesis, fatty acid-binding protein 4 and peroxisome proliferator-activated receptor γ for adipogenesis, TuJ1, neurofilament light chain, and neurofilament heavy chain for neurogenesis). There were no significant differences in the clonogenic potential and proliferation rate between early and late passage npMSCs. These results show that npMSCs possess the characteristics of MSCs in terms of morphology, multipotent differentiation capacity, cell surface marker expression, and clonogenicity. Thus, npMSCs may represent an alternative source of MSCs.

Original languageEnglish
Pages (from-to)185-193
Number of pages9
JournalExperimental Biology and Medicine
Volume240
Issue number2
DOIs
Publication statusPublished - 2015 Feb 14

Fingerprint

Multipotent Stem Cells
Nasal Polyps
Stem cells
Mesenchymal Stromal Cells
Alcian Blue
Intermediate Filaments
Flow cytometry
Polymerase chain reaction
Histocompatibility Antigens Class II
Tissue
HLA Antigens
Assays
Flow Cytometry
Colony-Forming Units Assay
Chondrogenesis
Antigens
Fatty Acid-Binding Proteins
Adipogenesis
Peroxisome Proliferator-Activated Receptors
Osteocalcin

Keywords

  • adipogenesis
  • chondrogenesis
  • mesenchymal stem cell
  • Nasal polyp
  • neurogenesis
  • osteogenesis

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

Isolation and characterization of multipotent mesenchymal stem cells in nasal polyps. / Cho, Jung Sun; Park, Joo Hoo; Kang, Ju Hyung; Kim, Sung Eun; Park, Il Ho; Lee, Heung Man.

In: Experimental Biology and Medicine, Vol. 240, No. 2, 14.02.2015, p. 185-193.

Research output: Contribution to journalArticle

Cho, Jung Sun ; Park, Joo Hoo ; Kang, Ju Hyung ; Kim, Sung Eun ; Park, Il Ho ; Lee, Heung Man. / Isolation and characterization of multipotent mesenchymal stem cells in nasal polyps. In: Experimental Biology and Medicine. 2015 ; Vol. 240, No. 2. pp. 185-193.
@article{fb170baf72cd4914aa9bf49b1a21b0fd,
title = "Isolation and characterization of multipotent mesenchymal stem cells in nasal polyps",
abstract = "Mesenchymal stem cells (MSCs) are multipotent progenitor cells in adult tissues. This study aimed to investigate nasal polyp (NP) tissues as a potential new source of multipotent MSCs that maintain their stemness and differentiation potential following multiple rounds of passaging. NP tissues were obtained from 10 patients during endoscopic sinus surgery. After isolating and culturing NP-derived MSCs (npMSCs), the expression levels of the surface markers CD34, CD44, CD45, CD73, CD90, CD105, CD106, CD146 and human leukocyte antigens-class II DR antigen (HLA-DR) were estimated by flow cytometry. NpMSCs were cultured in chondrogenic, osteogenic, adipogenic, or neurogenic differentiation medium. The differentiation potential of npMSCs was analyzed by Alcian blue, alizarin red S, oil red O, and immunocytochemical staining and reverse transcription-polymerase chain reaction. The clonogenic potential of npMSCs was measured using a colony-forming unit assay. Cell proliferation of npMSCs was measured using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Flow cytometry analysis revealed that npMSCs were negative for hematopoietic lineage markers (CD34, CD45, and HLA-DR) and positive for MSC markers (CD44, CD73, CD90, and CD105). The npMSCs differentiated into osteogenic, adipogenic, chondrogenic, and neurogenic lineages, respectively. Chondrogenically differentiated npMSCs were stained with Alcian blue, osteogenically differentiated npMSCs were stained with alizarin red S, and adipogenically differentiated npMSCs were stained with oil red O. Real-time polymerase chain reaction results showed that the differentiated npMSCs expressed the respective differentiation markers (Sox 9 and Col2A for chondrogenesis, Runx2 and osteocalcin for osteogenesis, fatty acid-binding protein 4 and peroxisome proliferator-activated receptor γ for adipogenesis, TuJ1, neurofilament light chain, and neurofilament heavy chain for neurogenesis). There were no significant differences in the clonogenic potential and proliferation rate between early and late passage npMSCs. These results show that npMSCs possess the characteristics of MSCs in terms of morphology, multipotent differentiation capacity, cell surface marker expression, and clonogenicity. Thus, npMSCs may represent an alternative source of MSCs.",
keywords = "adipogenesis, chondrogenesis, mesenchymal stem cell, Nasal polyp, neurogenesis, osteogenesis",
author = "Cho, {Jung Sun} and Park, {Joo Hoo} and Kang, {Ju Hyung} and Kim, {Sung Eun} and Park, {Il Ho} and Lee, {Heung Man}",
year = "2015",
month = "2",
day = "14",
doi = "10.1177/1535370214553898",
language = "English",
volume = "240",
pages = "185--193",
journal = "Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N. Y.)",
issn = "1535-3702",
publisher = "Society for Experimental Biology and Medicine",
number = "2",

}

TY - JOUR

T1 - Isolation and characterization of multipotent mesenchymal stem cells in nasal polyps

AU - Cho, Jung Sun

AU - Park, Joo Hoo

AU - Kang, Ju Hyung

AU - Kim, Sung Eun

AU - Park, Il Ho

AU - Lee, Heung Man

PY - 2015/2/14

Y1 - 2015/2/14

N2 - Mesenchymal stem cells (MSCs) are multipotent progenitor cells in adult tissues. This study aimed to investigate nasal polyp (NP) tissues as a potential new source of multipotent MSCs that maintain their stemness and differentiation potential following multiple rounds of passaging. NP tissues were obtained from 10 patients during endoscopic sinus surgery. After isolating and culturing NP-derived MSCs (npMSCs), the expression levels of the surface markers CD34, CD44, CD45, CD73, CD90, CD105, CD106, CD146 and human leukocyte antigens-class II DR antigen (HLA-DR) were estimated by flow cytometry. NpMSCs were cultured in chondrogenic, osteogenic, adipogenic, or neurogenic differentiation medium. The differentiation potential of npMSCs was analyzed by Alcian blue, alizarin red S, oil red O, and immunocytochemical staining and reverse transcription-polymerase chain reaction. The clonogenic potential of npMSCs was measured using a colony-forming unit assay. Cell proliferation of npMSCs was measured using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Flow cytometry analysis revealed that npMSCs were negative for hematopoietic lineage markers (CD34, CD45, and HLA-DR) and positive for MSC markers (CD44, CD73, CD90, and CD105). The npMSCs differentiated into osteogenic, adipogenic, chondrogenic, and neurogenic lineages, respectively. Chondrogenically differentiated npMSCs were stained with Alcian blue, osteogenically differentiated npMSCs were stained with alizarin red S, and adipogenically differentiated npMSCs were stained with oil red O. Real-time polymerase chain reaction results showed that the differentiated npMSCs expressed the respective differentiation markers (Sox 9 and Col2A for chondrogenesis, Runx2 and osteocalcin for osteogenesis, fatty acid-binding protein 4 and peroxisome proliferator-activated receptor γ for adipogenesis, TuJ1, neurofilament light chain, and neurofilament heavy chain for neurogenesis). There were no significant differences in the clonogenic potential and proliferation rate between early and late passage npMSCs. These results show that npMSCs possess the characteristics of MSCs in terms of morphology, multipotent differentiation capacity, cell surface marker expression, and clonogenicity. Thus, npMSCs may represent an alternative source of MSCs.

AB - Mesenchymal stem cells (MSCs) are multipotent progenitor cells in adult tissues. This study aimed to investigate nasal polyp (NP) tissues as a potential new source of multipotent MSCs that maintain their stemness and differentiation potential following multiple rounds of passaging. NP tissues were obtained from 10 patients during endoscopic sinus surgery. After isolating and culturing NP-derived MSCs (npMSCs), the expression levels of the surface markers CD34, CD44, CD45, CD73, CD90, CD105, CD106, CD146 and human leukocyte antigens-class II DR antigen (HLA-DR) were estimated by flow cytometry. NpMSCs were cultured in chondrogenic, osteogenic, adipogenic, or neurogenic differentiation medium. The differentiation potential of npMSCs was analyzed by Alcian blue, alizarin red S, oil red O, and immunocytochemical staining and reverse transcription-polymerase chain reaction. The clonogenic potential of npMSCs was measured using a colony-forming unit assay. Cell proliferation of npMSCs was measured using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Flow cytometry analysis revealed that npMSCs were negative for hematopoietic lineage markers (CD34, CD45, and HLA-DR) and positive for MSC markers (CD44, CD73, CD90, and CD105). The npMSCs differentiated into osteogenic, adipogenic, chondrogenic, and neurogenic lineages, respectively. Chondrogenically differentiated npMSCs were stained with Alcian blue, osteogenically differentiated npMSCs were stained with alizarin red S, and adipogenically differentiated npMSCs were stained with oil red O. Real-time polymerase chain reaction results showed that the differentiated npMSCs expressed the respective differentiation markers (Sox 9 and Col2A for chondrogenesis, Runx2 and osteocalcin for osteogenesis, fatty acid-binding protein 4 and peroxisome proliferator-activated receptor γ for adipogenesis, TuJ1, neurofilament light chain, and neurofilament heavy chain for neurogenesis). There were no significant differences in the clonogenic potential and proliferation rate between early and late passage npMSCs. These results show that npMSCs possess the characteristics of MSCs in terms of morphology, multipotent differentiation capacity, cell surface marker expression, and clonogenicity. Thus, npMSCs may represent an alternative source of MSCs.

KW - adipogenesis

KW - chondrogenesis

KW - mesenchymal stem cell

KW - Nasal polyp

KW - neurogenesis

KW - osteogenesis

UR - http://www.scopus.com/inward/record.url?scp=84922718579&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84922718579&partnerID=8YFLogxK

U2 - 10.1177/1535370214553898

DO - 10.1177/1535370214553898

M3 - Article

C2 - 25294891

AN - SCOPUS:84922718579

VL - 240

SP - 185

EP - 193

JO - Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N. Y.)

JF - Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N. Y.)

SN - 1535-3702

IS - 2

ER -