Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV

The CMS Collaboration

Research output: Contribution to journalArticle

128 Citations (Scopus)

Abstract

Improved jet energy scale corrections, based on a data sample corresponding to an integrated luminosity of 19.7 fb-1 collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 8 TeV, are presented. The corrections as a function of pseudorapidity η and transverse momentum pT are extracted from data and simulated events combining several channels and methods. They account successively for the effects of pileup, uniformity of the detector response, and residual data-simulation jet energy scale differences. Further corrections, depending on the jet flavor and distance parameter (jet size) R, are also presented. The jet energy resolution is measured in data and simulated events and is studied as a function of pileup, jet size, and jet flavor. Typical jet energy resolutions at the central rapidities are 15-20% at 30 GeV, about 10% at 100 GeV, and 5% at 1 TeV. The studies exploit events with dijet topology, as well as photon+jet, Z+jet and multijet events. Several new techniques are used to account for the various sources of jet energy scale corrections, and a full set of uncertainties, and their correlations, are provided.The final uncertainties on the jet energy scale are below 3% across the phase space considered by most analyses (pT > 30 GeV and |η| < 5:0). In the barrel region (|η| < 1:3) an uncertainty below 1% for pT > 30 GeV is reached, when excluding the jet flavor uncertainties, which are provided separately for different jet flavors. A new benchmark for jet energy scale determination at hadron colliders is achieved with 0.32% uncertainty for jets with pT of the order of 165-330 GeV, and |η| < 0:8.

Original languageEnglish
Article numberP02014
JournalJournal of Instrumentation
Volume12
Issue number2
DOIs
Publication statusPublished - 2017 Feb 22

Fingerprint

Collision
collisions
Energy
Experiment
Experiments
energy
Flavors
Uncertainty
Protons
protons
Colliding beam accelerators
data simulation
Barycentre
transverse momentum
Uniformity
center of mass
Luminance
Phase Space
Momentum
Photon

Keywords

  • Large detector-systems performance
  • Performance of High Energy Physics Detectors

ASJC Scopus subject areas

  • Instrumentation
  • Mathematical Physics

Cite this

Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV. / The CMS Collaboration.

In: Journal of Instrumentation, Vol. 12, No. 2, P02014, 22.02.2017.

Research output: Contribution to journalArticle

@article{a1d82c7faabc4969a702043cb4658fde,
title = "Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV",
abstract = "Improved jet energy scale corrections, based on a data sample corresponding to an integrated luminosity of 19.7 fb-1 collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 8 TeV, are presented. The corrections as a function of pseudorapidity η and transverse momentum pT are extracted from data and simulated events combining several channels and methods. They account successively for the effects of pileup, uniformity of the detector response, and residual data-simulation jet energy scale differences. Further corrections, depending on the jet flavor and distance parameter (jet size) R, are also presented. The jet energy resolution is measured in data and simulated events and is studied as a function of pileup, jet size, and jet flavor. Typical jet energy resolutions at the central rapidities are 15-20{\%} at 30 GeV, about 10{\%} at 100 GeV, and 5{\%} at 1 TeV. The studies exploit events with dijet topology, as well as photon+jet, Z+jet and multijet events. Several new techniques are used to account for the various sources of jet energy scale corrections, and a full set of uncertainties, and their correlations, are provided.The final uncertainties on the jet energy scale are below 3{\%} across the phase space considered by most analyses (pT > 30 GeV and |η| < 5:0). In the barrel region (|η| < 1:3) an uncertainty below 1{\%} for pT > 30 GeV is reached, when excluding the jet flavor uncertainties, which are provided separately for different jet flavors. A new benchmark for jet energy scale determination at hadron colliders is achieved with 0.32{\%} uncertainty for jets with pT of the order of 165-330 GeV, and |η| < 0:8.",
keywords = "Large detector-systems performance, Performance of High Energy Physics Detectors",
author = "{The CMS Collaboration} and V. Khachatryan and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and E. Asilar and T. Bergauer and J. Brandstetter and E. Brondolin and M. Dragicevic and J. Er{\"o} and M. Flechl and M. Friedl and R. Fr{\"u}hwirth and Ghete, {V. M.} and C. Hartl and N. H{\"o}rmann and J. Hrubec and M. Jeitler and V. Kn{\"u}nz and A. K{\"o}nig and M. Krammer and I. Kr{\"a}tschmer and D. Liko and T. Matsushita and I. Mikulec and D. Rabady and B. Rahbaran and H. Rohringer and J. Schieck and R. Sch{\"o}fbeck and J. Strauss and W. Treberer-Treberspurg and W. Waltenberger and Wulz, {C. E.} and V. Mossolov and N. Shumeiko and {Suarez Gonzalez}, J. and S. Alderweireldt and T. Cornelis and {De Wolf}, {E. A.} and X. Janssen and A. Knutsson and J. Lauwers and S. Luyckx and {Van De Klundert}, M. and {Van Haevermaet}, H. and {Van Mechelen}, P. and {Van Remortel}, N. and Suyong Choi and Park, {Sung Keun}",
year = "2017",
month = "2",
day = "22",
doi = "10.1088/1748-0221/12/02/P02014",
language = "English",
volume = "12",
journal = "Journal of Instrumentation",
issn = "1748-0221",
publisher = "IOP Publishing Ltd.",
number = "2",

}

TY - JOUR

T1 - Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV

AU - The CMS Collaboration

AU - Khachatryan, V.

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Asilar, E.

AU - Bergauer, T.

AU - Brandstetter, J.

AU - Brondolin, E.

AU - Dragicevic, M.

AU - Erö, J.

AU - Flechl, M.

AU - Friedl, M.

AU - Frühwirth, R.

AU - Ghete, V. M.

AU - Hartl, C.

AU - Hörmann, N.

AU - Hrubec, J.

AU - Jeitler, M.

AU - Knünz, V.

AU - König, A.

AU - Krammer, M.

AU - Krätschmer, I.

AU - Liko, D.

AU - Matsushita, T.

AU - Mikulec, I.

AU - Rabady, D.

AU - Rahbaran, B.

AU - Rohringer, H.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Strauss, J.

AU - Treberer-Treberspurg, W.

AU - Waltenberger, W.

AU - Wulz, C. E.

AU - Mossolov, V.

AU - Shumeiko, N.

AU - Suarez Gonzalez, J.

AU - Alderweireldt, S.

AU - Cornelis, T.

AU - De Wolf, E. A.

AU - Janssen, X.

AU - Knutsson, A.

AU - Lauwers, J.

AU - Luyckx, S.

AU - Van De Klundert, M.

AU - Van Haevermaet, H.

AU - Van Mechelen, P.

AU - Van Remortel, N.

AU - Choi, Suyong

AU - Park, Sung Keun

PY - 2017/2/22

Y1 - 2017/2/22

N2 - Improved jet energy scale corrections, based on a data sample corresponding to an integrated luminosity of 19.7 fb-1 collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 8 TeV, are presented. The corrections as a function of pseudorapidity η and transverse momentum pT are extracted from data and simulated events combining several channels and methods. They account successively for the effects of pileup, uniformity of the detector response, and residual data-simulation jet energy scale differences. Further corrections, depending on the jet flavor and distance parameter (jet size) R, are also presented. The jet energy resolution is measured in data and simulated events and is studied as a function of pileup, jet size, and jet flavor. Typical jet energy resolutions at the central rapidities are 15-20% at 30 GeV, about 10% at 100 GeV, and 5% at 1 TeV. The studies exploit events with dijet topology, as well as photon+jet, Z+jet and multijet events. Several new techniques are used to account for the various sources of jet energy scale corrections, and a full set of uncertainties, and their correlations, are provided.The final uncertainties on the jet energy scale are below 3% across the phase space considered by most analyses (pT > 30 GeV and |η| < 5:0). In the barrel region (|η| < 1:3) an uncertainty below 1% for pT > 30 GeV is reached, when excluding the jet flavor uncertainties, which are provided separately for different jet flavors. A new benchmark for jet energy scale determination at hadron colliders is achieved with 0.32% uncertainty for jets with pT of the order of 165-330 GeV, and |η| < 0:8.

AB - Improved jet energy scale corrections, based on a data sample corresponding to an integrated luminosity of 19.7 fb-1 collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 8 TeV, are presented. The corrections as a function of pseudorapidity η and transverse momentum pT are extracted from data and simulated events combining several channels and methods. They account successively for the effects of pileup, uniformity of the detector response, and residual data-simulation jet energy scale differences. Further corrections, depending on the jet flavor and distance parameter (jet size) R, are also presented. The jet energy resolution is measured in data and simulated events and is studied as a function of pileup, jet size, and jet flavor. Typical jet energy resolutions at the central rapidities are 15-20% at 30 GeV, about 10% at 100 GeV, and 5% at 1 TeV. The studies exploit events with dijet topology, as well as photon+jet, Z+jet and multijet events. Several new techniques are used to account for the various sources of jet energy scale corrections, and a full set of uncertainties, and their correlations, are provided.The final uncertainties on the jet energy scale are below 3% across the phase space considered by most analyses (pT > 30 GeV and |η| < 5:0). In the barrel region (|η| < 1:3) an uncertainty below 1% for pT > 30 GeV is reached, when excluding the jet flavor uncertainties, which are provided separately for different jet flavors. A new benchmark for jet energy scale determination at hadron colliders is achieved with 0.32% uncertainty for jets with pT of the order of 165-330 GeV, and |η| < 0:8.

KW - Large detector-systems performance

KW - Performance of High Energy Physics Detectors

UR - http://www.scopus.com/inward/record.url?scp=85034950246&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85034950246&partnerID=8YFLogxK

U2 - 10.1088/1748-0221/12/02/P02014

DO - 10.1088/1748-0221/12/02/P02014

M3 - Article

AN - SCOPUS:85034950246

VL - 12

JO - Journal of Instrumentation

JF - Journal of Instrumentation

SN - 1748-0221

IS - 2

M1 - P02014

ER -