TY - GEN
T1 - Joint Appearance-Feature Domain Adaptation
T2 - 11th International Workshop on Machine Learning in Medical Imaging, MLMI 2020, held in conjunction with the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2020
AU - Xiao, Bin
AU - He, Naying
AU - Wang, Qian
AU - Xue, Zhong
AU - Chen, Lei
AU - Yan, Fuhua
AU - Shi, Feng
AU - Shen, Dinggang
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging technique used to quantitatively measure the iron content in the brain. Patients with Parkinson’s disease are reported having increased iron deposition, especially in substantia nigra (SN) which is a relatively small gray matter structure located in the midbrain. The automatic segmentation of SN is a critical prerequisite step to facilitate the progression of evaluating the course of Parkinson’s disease. However, the imaging protocol and reconstruction methods in QSM acquisition vary largely, rendering great challenges in constructing and applying image segmentation models. Thus, a model trained on a certain dataset often performs poorly on datasets from other scanners or reconstruction methods. To quickly transfer a trained segmentation model to a dataset acquired in a new instrument, we have developed a joint appearance-feature domain adaptation framework (JAFDAF) to transfer the knowledge from the source to the target domains for improved SN segmentation. In particular, we perform domain adaption in both appearance and feature spaces. In the appearance space, we use region-based histogram matching and a neural network to align the grayscale ranges of images between these two domains. In the feature space, we propose a domain regularization layer (DRL) by utilizing the idea of neural architecture search (NAS) to enforce the convolution kernels for learning features that are efficacious in both domains. Ablation experiments have been carried out to evaluate the proposed JAFDAF framework, and the experimental results on 27 subjects show that our method achieves up to 12% over the baseline model and about 5% over a fine-tuning approach.
AB - Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging technique used to quantitatively measure the iron content in the brain. Patients with Parkinson’s disease are reported having increased iron deposition, especially in substantia nigra (SN) which is a relatively small gray matter structure located in the midbrain. The automatic segmentation of SN is a critical prerequisite step to facilitate the progression of evaluating the course of Parkinson’s disease. However, the imaging protocol and reconstruction methods in QSM acquisition vary largely, rendering great challenges in constructing and applying image segmentation models. Thus, a model trained on a certain dataset often performs poorly on datasets from other scanners or reconstruction methods. To quickly transfer a trained segmentation model to a dataset acquired in a new instrument, we have developed a joint appearance-feature domain adaptation framework (JAFDAF) to transfer the knowledge from the source to the target domains for improved SN segmentation. In particular, we perform domain adaption in both appearance and feature spaces. In the appearance space, we use region-based histogram matching and a neural network to align the grayscale ranges of images between these two domains. In the feature space, we propose a domain regularization layer (DRL) by utilizing the idea of neural architecture search (NAS) to enforce the convolution kernels for learning features that are efficacious in both domains. Ablation experiments have been carried out to evaluate the proposed JAFDAF framework, and the experimental results on 27 subjects show that our method achieves up to 12% over the baseline model and about 5% over a fine-tuning approach.
KW - Domain adaptation
KW - Domain regularization layer
KW - QSM
KW - Region-based histogram matching
KW - Segmentation
KW - Substantia nigra
UR - http://www.scopus.com/inward/record.url?scp=85092737556&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-59861-7_25
DO - 10.1007/978-3-030-59861-7_25
M3 - Conference contribution
AN - SCOPUS:85092737556
SN - 9783030598600
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 241
EP - 249
BT - Machine Learning in Medical Imaging - 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020, Proceedings
A2 - Liu, Mingxia
A2 - Lian, Chunfeng
A2 - Yan, Pingkun
A2 - Cao, Xiaohuan
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 4 October 2020 through 4 October 2020
ER -