TY - GEN
T1 - Joint reconstruction and segmentation of 7T-like MR images from 3T MRI based on cascaded convolutional neural networks
AU - Bahrami, Khosro
AU - Rekik, Islem
AU - Shi, Feng
AU - Shen, Dinggang
N1 - Publisher Copyright:
© 2017, Springer International Publishing AG.
PY - 2017
Y1 - 2017
N2 - 7T MRI scanner provides MR images with higher resolution and better contrast than 3T MR scanners. This helps many medical analysis tasks, including tissue segmentation. However, currently there is a very limited number of 7T MRI scanners worldwide. This motivates us to propose a novel image post-processing framework that can jointly generate high-resolution 7T-like images and their corresponding high-quality 7T-like tissue segmentation maps, solely from the routine 3T MR images. Our proposed framework comprises two parallel components, namely (1) reconstruction and (2) segmentation. The reconstruction component includes the multi-step cascaded convolutional neural networks (CNNs) that map the input 3T MR image to a 7T-like MR image, in terms of both resolution and contrast. Similarly, the segmentation component involves another paralleled cascaded CNNs, with a different architecture, to generate high-quality segmentation maps. These cascaded feedbacks between the two designed paralleled CNNs allow both tasks to mutually benefit from each another when learning the respective reconstruction and segmentation mappings. For evaluation, we have tested our framework on 15 subjects (with paired 3T and 7T images) using a leave-one-out cross-validation. The experimental results show that our estimated 7T-like images have richer anatomical details and better segmentation results, compared to the 3T MRI. Furthermore, our method also achieved better results in both reconstruction and segmentation tasks, compared to the state-of-the-art methods.
AB - 7T MRI scanner provides MR images with higher resolution and better contrast than 3T MR scanners. This helps many medical analysis tasks, including tissue segmentation. However, currently there is a very limited number of 7T MRI scanners worldwide. This motivates us to propose a novel image post-processing framework that can jointly generate high-resolution 7T-like images and their corresponding high-quality 7T-like tissue segmentation maps, solely from the routine 3T MR images. Our proposed framework comprises two parallel components, namely (1) reconstruction and (2) segmentation. The reconstruction component includes the multi-step cascaded convolutional neural networks (CNNs) that map the input 3T MR image to a 7T-like MR image, in terms of both resolution and contrast. Similarly, the segmentation component involves another paralleled cascaded CNNs, with a different architecture, to generate high-quality segmentation maps. These cascaded feedbacks between the two designed paralleled CNNs allow both tasks to mutually benefit from each another when learning the respective reconstruction and segmentation mappings. For evaluation, we have tested our framework on 15 subjects (with paired 3T and 7T images) using a leave-one-out cross-validation. The experimental results show that our estimated 7T-like images have richer anatomical details and better segmentation results, compared to the 3T MRI. Furthermore, our method also achieved better results in both reconstruction and segmentation tasks, compared to the state-of-the-art methods.
UR - http://www.scopus.com/inward/record.url?scp=85029360284&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-66182-7_87
DO - 10.1007/978-3-319-66182-7_87
M3 - Conference contribution
AN - SCOPUS:85029360284
SN - 9783319661810
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 764
EP - 772
BT - Medical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
A2 - Descoteaux, Maxime
A2 - Duchesne, Simon
A2 - Franz, Alfred
A2 - Jannin, Pierre
A2 - Collins, D. Louis
A2 - Maier-Hein, Lena
PB - Springer Verlag
T2 - 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Y2 - 11 September 2017 through 13 September 2017
ER -