Knockdown of Sestrin2 Increases Lipopolysaccharide-Induced Oxidative Stress, Apoptosis, and Fibrotic Reactions in H9c2 Cells and Heart Tissues of Mice via an AMPK-Dependent Mechanism

Hwan Jin Hwang, Joo Won Kim, Hye Soo Chung, Ji A Seo, Sin Gon Kim, Nan Hee Kim, Kyung Mook Choi, Sei-Hyun Baik, Hye-Jin Yoo

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Sestrin2 (sesn2) is an endogenous antioxidant protein that has recently gained attention for its potential to treat various inflammatory diseases. However, the relationship of sesn2 with cardiomyopathy is still unclear. In H9c2 cells, sesn2 knockdown reduced the level of 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, downregulated antioxidant genes including catalase and superoxide dismutase (SOD2), and increased reactive oxygen species (ROS) production upon lipopolysaccharide (LPS) treatment. LPS-mediated cell death and the expression of matrix metalloproteinase (MMP) 2 and MMP9 were significantly increased by sesn2 knockdown. However, these increases were prevented by treatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator. Consistent with the in vitro results, AMPK phosphorylation was decreased in heart tissue from sesn2 knockdown mice compared to heart tissue from control C57BL/6 mice, which was associated with decreased expression of antioxidant genes and increased LPS-mediated cell death signaling. Furthermore, the decrease in AMPK phosphorylation caused by sesn2 knockdown increased LPS-mediated expression of cardiac fibrotic factors, including collagen type I and type III, in addition to MMP2 and MMP9, in heart tissue from C57BL/6 mice. These results suggest that sesn2 is a novel potential therapeutic target for cardiomyopathy under inflammatory conditions.

Original languageEnglish
Article number6209140
JournalMediators of Inflammation
Volume2018
DOIs
Publication statusPublished - 2018 Jan 1

Fingerprint

Adenosine Monophosphate
Protein Kinases
Lipopolysaccharides
Oxidative Stress
Apoptosis
Antioxidants
Phosphorylation
Cardiomyopathies
Inbred C57BL Mouse
Cell Death
Matrix Metalloproteinase 2
Collagen Type I
Catalase
Superoxide Dismutase
Reactive Oxygen Species
Down-Regulation
Gene Expression
Genes
Proteins
Therapeutics

ASJC Scopus subject areas

  • Immunology
  • Cell Biology

Cite this

@article{18593e78d650450883eab91b8d3fea9f,
title = "Knockdown of Sestrin2 Increases Lipopolysaccharide-Induced Oxidative Stress, Apoptosis, and Fibrotic Reactions in H9c2 Cells and Heart Tissues of Mice via an AMPK-Dependent Mechanism",
abstract = "Sestrin2 (sesn2) is an endogenous antioxidant protein that has recently gained attention for its potential to treat various inflammatory diseases. However, the relationship of sesn2 with cardiomyopathy is still unclear. In H9c2 cells, sesn2 knockdown reduced the level of 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, downregulated antioxidant genes including catalase and superoxide dismutase (SOD2), and increased reactive oxygen species (ROS) production upon lipopolysaccharide (LPS) treatment. LPS-mediated cell death and the expression of matrix metalloproteinase (MMP) 2 and MMP9 were significantly increased by sesn2 knockdown. However, these increases were prevented by treatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator. Consistent with the in vitro results, AMPK phosphorylation was decreased in heart tissue from sesn2 knockdown mice compared to heart tissue from control C57BL/6 mice, which was associated with decreased expression of antioxidant genes and increased LPS-mediated cell death signaling. Furthermore, the decrease in AMPK phosphorylation caused by sesn2 knockdown increased LPS-mediated expression of cardiac fibrotic factors, including collagen type I and type III, in addition to MMP2 and MMP9, in heart tissue from C57BL/6 mice. These results suggest that sesn2 is a novel potential therapeutic target for cardiomyopathy under inflammatory conditions.",
author = "Hwang, {Hwan Jin} and Kim, {Joo Won} and Chung, {Hye Soo} and Seo, {Ji A} and Kim, {Sin Gon} and Kim, {Nan Hee} and Choi, {Kyung Mook} and Sei-Hyun Baik and Hye-Jin Yoo",
year = "2018",
month = "1",
day = "1",
doi = "10.1155/2018/6209140",
language = "English",
volume = "2018",
journal = "Mediators of Inflammation",
issn = "0962-9351",
publisher = "Hindawi Publishing Corporation",

}

TY - JOUR

T1 - Knockdown of Sestrin2 Increases Lipopolysaccharide-Induced Oxidative Stress, Apoptosis, and Fibrotic Reactions in H9c2 Cells and Heart Tissues of Mice via an AMPK-Dependent Mechanism

AU - Hwang, Hwan Jin

AU - Kim, Joo Won

AU - Chung, Hye Soo

AU - Seo, Ji A

AU - Kim, Sin Gon

AU - Kim, Nan Hee

AU - Choi, Kyung Mook

AU - Baik, Sei-Hyun

AU - Yoo, Hye-Jin

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Sestrin2 (sesn2) is an endogenous antioxidant protein that has recently gained attention for its potential to treat various inflammatory diseases. However, the relationship of sesn2 with cardiomyopathy is still unclear. In H9c2 cells, sesn2 knockdown reduced the level of 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, downregulated antioxidant genes including catalase and superoxide dismutase (SOD2), and increased reactive oxygen species (ROS) production upon lipopolysaccharide (LPS) treatment. LPS-mediated cell death and the expression of matrix metalloproteinase (MMP) 2 and MMP9 were significantly increased by sesn2 knockdown. However, these increases were prevented by treatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator. Consistent with the in vitro results, AMPK phosphorylation was decreased in heart tissue from sesn2 knockdown mice compared to heart tissue from control C57BL/6 mice, which was associated with decreased expression of antioxidant genes and increased LPS-mediated cell death signaling. Furthermore, the decrease in AMPK phosphorylation caused by sesn2 knockdown increased LPS-mediated expression of cardiac fibrotic factors, including collagen type I and type III, in addition to MMP2 and MMP9, in heart tissue from C57BL/6 mice. These results suggest that sesn2 is a novel potential therapeutic target for cardiomyopathy under inflammatory conditions.

AB - Sestrin2 (sesn2) is an endogenous antioxidant protein that has recently gained attention for its potential to treat various inflammatory diseases. However, the relationship of sesn2 with cardiomyopathy is still unclear. In H9c2 cells, sesn2 knockdown reduced the level of 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, downregulated antioxidant genes including catalase and superoxide dismutase (SOD2), and increased reactive oxygen species (ROS) production upon lipopolysaccharide (LPS) treatment. LPS-mediated cell death and the expression of matrix metalloproteinase (MMP) 2 and MMP9 were significantly increased by sesn2 knockdown. However, these increases were prevented by treatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator. Consistent with the in vitro results, AMPK phosphorylation was decreased in heart tissue from sesn2 knockdown mice compared to heart tissue from control C57BL/6 mice, which was associated with decreased expression of antioxidant genes and increased LPS-mediated cell death signaling. Furthermore, the decrease in AMPK phosphorylation caused by sesn2 knockdown increased LPS-mediated expression of cardiac fibrotic factors, including collagen type I and type III, in addition to MMP2 and MMP9, in heart tissue from C57BL/6 mice. These results suggest that sesn2 is a novel potential therapeutic target for cardiomyopathy under inflammatory conditions.

UR - http://www.scopus.com/inward/record.url?scp=85059365296&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85059365296&partnerID=8YFLogxK

U2 - 10.1155/2018/6209140

DO - 10.1155/2018/6209140

M3 - Article

C2 - 30116150

AN - SCOPUS:85059365296

VL - 2018

JO - Mediators of Inflammation

JF - Mediators of Inflammation

SN - 0962-9351

M1 - 6209140

ER -