TY - GEN
T1 - Learning best features and deformation statistics for hierarchical registration of MR brain images
AU - Wu, Guorong
AU - Qi, Feihu
AU - Shen, Dinggang
PY - 2007
Y1 - 2007
N2 - A fully learning-based framework has been presented for deformable registration of MR brain images. In this framework, the entire brain is first adaptively partitioned into a number of brain regions, and then the best features are learned for each of these brain regions. In order to obtain overall better performance for both of these two steps, they are integrated into a single framework and solved together by iteratively performing region partition and learning the best features for each partitioned region. In particular, the learned best features for each brain region are required to be identical, and maximally salient as well as consistent over all individual brains, thus facilitating the correspondence detection between individual brains during the registration procedure. Moreover, the importance of each brain point in registration is evaluated according to the distinctiveness and consistency of its respective best features, therefore the salient points with distinctive and consistent features can be hierarchically selected to steer the registration process and reduce the risk of being trapped in local minima. Finally, the statistics of inter-brain deformations, represented by multi-level B-Splines, is also hierarchically captured for effectively constraining the brain deformations estimated during the registration procedure. By using this proposed learning-based registration framework, more accurate and robust registration results can be achieved according to experiments on both real and simulated data.
AB - A fully learning-based framework has been presented for deformable registration of MR brain images. In this framework, the entire brain is first adaptively partitioned into a number of brain regions, and then the best features are learned for each of these brain regions. In order to obtain overall better performance for both of these two steps, they are integrated into a single framework and solved together by iteratively performing region partition and learning the best features for each partitioned region. In particular, the learned best features for each brain region are required to be identical, and maximally salient as well as consistent over all individual brains, thus facilitating the correspondence detection between individual brains during the registration procedure. Moreover, the importance of each brain point in registration is evaluated according to the distinctiveness and consistency of its respective best features, therefore the salient points with distinctive and consistent features can be hierarchically selected to steer the registration process and reduce the risk of being trapped in local minima. Finally, the statistics of inter-brain deformations, represented by multi-level B-Splines, is also hierarchically captured for effectively constraining the brain deformations estimated during the registration procedure. By using this proposed learning-based registration framework, more accurate and robust registration results can be achieved according to experiments on both real and simulated data.
UR - http://www.scopus.com/inward/record.url?scp=34548432628&partnerID=8YFLogxK
U2 - 10.1007/978-3-540-73273-0_14
DO - 10.1007/978-3-540-73273-0_14
M3 - Conference contribution
C2 - 17633697
AN - SCOPUS:34548432628
SN - 3540732721
SN - 9783540732723
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 160
EP - 171
BT - Information Processing in Medical lmaging - 20th International Conference, IPMI 2007, Proceedings
PB - Springer Verlag
T2 - 20th International Conference on Information Processing in Medical lmaging, IPMI 2007
Y2 - 2 July 2007 through 6 July 2007
ER -