Learning distance transform for boundary detection and deformable segmentation in CT prostate images

Yaozong Gao, Li Wang, Yeqin Shao, Dinggang Shen

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)


Segmenting the prostate from CT images is a critical step in the radiotherapy planning for prostate cancer. The segmentation accuracy could largely affect the efficacy of radiation treatment. However, due to the touching boundaries with the bladder and the rectum, the prostate boundary is often ambiguous and hard to recognize, which leads to inconsistent manual delineations across different clinicians. In this paper, we propose a learning-based approach for boundary detection and deformable segmentation of the prostate. Our proposed method aims to learn a boundary distance transform, which maps an intensity image into a boundary distance map. To enforce the spatial consistency on the learned distance transform, we combine our approach with the auto-context model for teratively refining the estimated distance map. After the refinement, the prostate boundaries can be readily detected by finding the valley in the distance map. In addition, the estimated distance map can also be used as a new external force for guiding the deformable segmentation. Specifically, to automatically segment the prostate, we integrate the estimated boundary distance map into a level set formulation. Experimental results on 73 CT planning images show that the proposed distance transform is more effective than the traditional classification-based method for driving the deformable segmentation. Also, our method can achieve more consistentsegmentations than human raters, and more accurate results than the existing methods under comparison.

Original languageEnglish
Pages (from-to)93-100
Number of pages8
JournalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Publication statusPublished - 2014
Externally publishedYes

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)


Dive into the research topics of 'Learning distance transform for boundary detection and deformable segmentation in CT prostate images'. Together they form a unique fingerprint.

Cite this