Abstract
We present a high-energy neutrino event generator, called LeptonInjector, alongside an event weighter, called LeptonWeighter. Both are designed for large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event generator allows for quick and flexible simulation of neutrino events within and around the detector volume, and implements the leading Standard Model neutrino interaction processes relevant for neutrino observatories: neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation. In this paper, we discuss the event generation algorithm, the weighting algorithm, and the main functions of the publicly available code, with examples. Program summary: Program Titles: LeptonInjector and LeptonWeighter CPC Library link to program files: https://doi.org/10.17632/662gkpjfd9.1 Developer's repository links: https://github.com/icecube/LeptonInjector and https://github.com/icecube/LeptonWeighter Licensing provisions: GNU Lesser General Public License, version 3. Programming Language: C++11 External Routines: • Boost • HDF5 • nuflux (https://github.com/icecube/nuflux) • nuSQuIDS (https://github.com/arguelles/nuSQuIDS) • Photospline (https://github.com/icecube/photospline) • SuiteSparse (https://github.com/DrTimothyAldenDavis/SuiteSparse) Nature of problem: LeptonInjector: Generate neutrino interaction events of all possible topologies and energies throughout and around a detector volume. LeptonWeighter: Reweight Monte Carlo events, generated by a set of LeptonInjector Generators, to any desired physical neutrino flux or cross section. Solution method: LeptonInjector: Projected ranges of generated leptons and the extent of the detector, in terms of column depth, are used to inject events in and around the detector volume. Event kinematics follow distributions provided in cross section files. LeptonWeighter: Event generation probabilities are calculated for each Generator, which are then combined into a generation weight and used to calculate an overall event weight.
Original language | English |
---|---|
Article number | 108018 |
Journal | Computer Physics Communications |
Volume | 266 |
DOIs | |
Publication status | Published - 2021 Sep |
Externally published | Yes |
Keywords
- Event generator
- Neutrino generator
- Neutrino interaction
- Neutrino simulation
- Weighting
ASJC Scopus subject areas
- Hardware and Architecture
- Physics and Astronomy(all)
Fingerprint
Dive into the research topics of 'LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
LeptonInjector and LeptonWeighter : A neutrino event generator and weighter for neutrino observatories. / Abbasi, R.; Ackermann, M.; Adams, J. et al.
In: Computer Physics Communications, Vol. 266, 108018, 09.2021.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - LeptonInjector and LeptonWeighter
T2 - A neutrino event generator and weighter for neutrino observatories
AU - Abbasi, R.
AU - Ackermann, M.
AU - Adams, J.
AU - Aguilar, J. A.
AU - Ahlers, M.
AU - Ahrens, M.
AU - Alispach, C.
AU - Alves, A. A.
AU - Amin, N. M.
AU - An, R.
AU - Andeen, K.
AU - Anderson, T.
AU - Ansseau, I.
AU - Anton, G.
AU - Argüelles, C.
AU - Axani, S.
AU - Bai, X.
AU - Balagopal, A.
AU - Barbano, A.
AU - Barwick, S. W.
AU - Bastian, B.
AU - Basu, V.
AU - Baum, V.
AU - Baur, S.
AU - Bay, R.
AU - Beatty, J. J.
AU - Becker, K. H.
AU - Becker Tjus, J.
AU - Bellenghi, C.
AU - BenZvi, S.
AU - Berley, D.
AU - Bernardini, E.
AU - Besson, D. Z.
AU - Binder, G.
AU - Bindig, D.
AU - Blaufuss, E.
AU - Blot, S.
AU - Böser, S.
AU - Botner, O.
AU - Böttcher, J.
AU - Bourbeau, E.
AU - Bourbeau, J.
AU - Bradascio, F.
AU - Braun, J.
AU - Bron, S.
AU - Brostean-Kaiser, J.
AU - Burgman, A.
AU - Busse, R. S.
AU - Campana, M. A.
AU - Chen, C.
AU - Chirkin, D.
AU - Choi, S.
AU - Clark, B. A.
AU - Clark, K.
AU - Classen, L.
AU - Coleman, A.
AU - Collin, G. H.
AU - Conrad, J. M.
AU - Coppin, P.
AU - Correa, P.
AU - Cowen, D. F.
AU - Cross, R.
AU - Dave, P.
AU - De Clercq, C.
AU - DeLaunay, J. J.
AU - Dembinski, H.
AU - Deoskar, K.
AU - De Ridder, S.
AU - Desai, A.
AU - Desiati, P.
AU - de Vries, K. D.
AU - de Wasseige, G.
AU - de With, M.
AU - DeYoung, T.
AU - Dharani, S.
AU - Diaz, A.
AU - Díaz-Vélez, J. C.
AU - Dujmovic, H.
AU - Dunkman, M.
AU - DuVernois, M. A.
AU - Dvorak, E.
AU - Ehrhardt, T.
AU - Eller, P.
AU - Engel, R.
AU - Evans, J.
AU - Evenson, P. A.
AU - Fahey, S.
AU - Fazely, A. R.
AU - Fiedlschuster, S.
AU - Fienberg, A. T.
AU - Filimonov, K.
AU - Finley, C.
AU - Fischer, L.
AU - Fox, D.
AU - Franckowiak, A.
AU - Friedman, E.
AU - Fritz, A.
AU - Fürst, P.
AU - Gaisser, T. K.
AU - Gallagher, J.
AU - Ganster, E.
AU - Garrappa, S.
AU - Gerhardt, L.
AU - Ghadimi, A.
AU - Glaser, C.
AU - Glauch, T.
AU - Glüsenkamp, T.
AU - Goldschmidt, A.
AU - Gonzalez, J. G.
AU - Goswami, S.
AU - Grant, D.
AU - Grégoire, T.
AU - Griffith, Z.
AU - Griswold, S.
AU - Gündüz, M.
AU - Haack, C.
AU - Hallgren, A.
AU - Halliday, R.
AU - Halve, L.
AU - Halzen, F.
AU - Ha Minh, M.
AU - Hanson, K.
AU - Hardin, J.
AU - Harnisch, A. A.
AU - Haungs, A.
AU - Hauser, S.
AU - Hebecker, D.
AU - Helbing, K.
AU - Henningsen, F.
AU - Hettinger, E. C.
AU - Hickford, S.
AU - Hignight, J.
AU - Hill, C.
AU - Hill, G. C.
AU - Hoffman, K. D.
AU - Hoffmann, R.
AU - Hoinka, T.
AU - Hokanson-Fasig, B.
AU - Hoshina, K.
AU - Huang, F.
AU - Huber, M.
AU - Huber, T.
AU - Hultqvist, K.
AU - Hünnefeld, M.
AU - Hussain, R.
AU - In, S.
AU - Iovine, N.
AU - Ishihara, A.
AU - Jansson, M.
AU - Japaridze, G. S.
AU - Jeong, M.
AU - Jones, B. J.P.
AU - Joppe, R.
AU - Kang, D.
AU - Kang, W.
AU - Kang, X.
AU - Kappes, A.
AU - Kappesser, D.
AU - Karg, T.
AU - Karl, M.
AU - Karle, A.
AU - Katz, U.
AU - Kauer, M.
AU - Kellermann, M.
AU - Kelley, J. L.
AU - Kheirandish, A.
AU - Kim, J.
AU - Kin, K.
AU - Kintscher, T.
AU - Kiryluk, J.
AU - Klein, S. R.
AU - Koirala, R.
AU - Kolanoski, H.
AU - Köpke, L.
AU - Kopper, C.
AU - Kopper, S.
AU - Koskinen, D. J.
AU - Koundal, P.
AU - Kovacevich, M.
AU - Kowalski, M.
AU - Krings, K.
AU - Krückl, G.
AU - Kurahashi, N.
AU - Kyriacou, A.
AU - Lagunas Gualda, C.
AU - Lanfranchi, J. L.
AU - Larson, M. J.
AU - Lauber, F.
AU - Lazar, J. P.
AU - Leonard, K.
AU - Leszczyńska, A.
AU - Li, Y.
AU - Liu, Q. R.
AU - Lohfink, E.
AU - Lozano Mariscal, C. J.
AU - Lu, L.
AU - Lucarelli, F.
AU - Ludwig, A.
AU - Luszczak, W.
AU - Lyu, Y.
AU - Ma, W. Y.
AU - Madsen, J.
AU - Mahn, K. B.M.
AU - Makino, Y.
AU - Mallik, P.
AU - Mancina, S.
AU - Mariş, I. C.
AU - Maruyama, R.
AU - Mase, K.
AU - McNally, F.
AU - Meagher, K.
AU - Medina, A.
AU - Meier, M.
AU - Meighen-Berger, S.
AU - Merz, J.
AU - Micallef, J.
AU - Mockler, D.
AU - Momenté, G.
AU - Montaruli, T.
AU - Moore, R. W.
AU - Morse, R.
AU - Moulai, M.
AU - Naab, R.
AU - Nagai, R.
AU - Naumann, U.
AU - Necker, J.
AU - Nguyễn, L. V.
AU - Niederhausen, H.
AU - Nisa, M. U.
AU - Nowicki, S. C.
AU - Nygren, D. R.
AU - Obertacke Pollmann, A.
AU - Oehler, M.
AU - Olivas, A.
AU - O'Sullivan, E.
AU - Pandya, H.
AU - Pankova, D. V.
AU - Park, N.
AU - Parker, G. K.
AU - Paudel, E. N.
AU - Peiffer, P.
AU - Pérez de los Heros, C.
AU - Philippen, S.
AU - Pieloth, D.
AU - Pieper, S.
AU - Pizzuto, A.
AU - Plum, M.
AU - Popovych, Y.
AU - Porcelli, A.
AU - Prado Rodriguez, M.
AU - Price, P. B.
AU - Pries, B.
AU - Przybylski, G. T.
AU - Raab, C.
AU - Raissi, A.
AU - Rameez, M.
AU - Rawlins, K.
AU - Rea, I. C.
AU - Rehman, A.
AU - Reimann, R.
AU - Renschler, M.
AU - Renzi, G.
AU - Resconi, E.
AU - Reusch, S.
AU - Rhode, W.
AU - Richman, M.
AU - Riedel, B.
AU - Robertson, S.
AU - Roellinghoff, G.
AU - Rongen, M.
AU - Rott, C.
AU - Ruhe, T.
AU - Ryckbosch, D.
AU - Rysewyk Cantu, D.
AU - Safa, I.
AU - Sanchez Herrera, S. E.
AU - Sandrock, A.
AU - Sandroos, J.
AU - Santander, M.
AU - Sarkar, S.
AU - Satalecka, K.
AU - Scharf, M.
AU - Schaufel, M.
AU - Schieler, H.
AU - Schlunder, P.
AU - Schmidt, T.
AU - Schneider, A.
AU - Schneider, J.
AU - Schröder, F. G.
AU - Schumacher, L.
AU - Sclafani, S.
AU - Seckel, D.
AU - Seunarine, S.
AU - Sharma, A.
AU - Shefali, S.
AU - Silva, M.
AU - Skrzypek, B.
AU - Smithers, B.
AU - Snihur, R.
AU - Soedingrekso, J.
AU - Soldin, D.
AU - Spiczak, G. M.
AU - Spiering, C.
AU - Stachurska, J.
AU - Stamatikos, M.
AU - Stanev, T.
AU - Stein, R.
AU - Stettner, J.
AU - Steuer, A.
AU - Stezelberger, T.
AU - Stokstad, R. G.
AU - Stuttard, T.
AU - Sullivan, G. W.
AU - Taboada, I.
AU - Tenholt, F.
AU - Ter-Antonyan, S.
AU - Tilav, S.
AU - Tischbein, F.
AU - Tollefson, K.
AU - Tomankova, L.
AU - Tönnis, C.
AU - Toscano, S.
AU - Tosi, D.
AU - Trettin, A.
AU - Tselengidou, M.
AU - Tung, C. F.
AU - Turcati, A.
AU - Turcotte, R.
AU - Turley, C. F.
AU - Twagirayezu, J. P.
AU - Ty, B.
AU - Unland Elorrieta, M. A.
AU - Valtonen-Mattila, N.
AU - Vandenbroucke, J.
AU - van Eijk, D.
AU - van Eijndhoven, N.
AU - Vannerom, D.
AU - van Santen, J.
AU - Verpoest, S.
AU - Vraeghe, M.
AU - Walck, C.
AU - Wallace, A.
AU - Watson, T. B.
AU - Weaver, C.
AU - Weindl, A.
AU - Weiss, M. J.
AU - Weldert, J.
AU - Wendt, C.
AU - Werthebach, J.
AU - Weyrauch, M.
AU - Whelan, B. J.
AU - Whitehorn, N.
AU - Wiebe, K.
AU - Wiebusch, C. H.
AU - Williams, D. R.
AU - Wolf, M.
AU - Woschnagg, K.
AU - Wrede, G.
AU - Wulff, J.
AU - Xu, X. W.
AU - Xu, Y.
AU - Yanez, J. P.
AU - Yoshida, S.
AU - Yuan, T.
AU - Zhang, Z.
N1 - Funding Information: The IceCube collaboration acknowledges the significant contributions to this manuscript from Carlos Argüelles, Austin Schneider, and Benjamin Smithers. We acknowledge the support from the following agencies: USA – U.S. National Science Foundation-Office of Polar Programs , U.S. National Science Foundation-Physics Division , Wisconsin Alumni Research Foundation , Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison , Open Science Grid (OSG) , Extreme Science and Engineering Discovery Environment (XSEDE) , Frontera computing project at the Texas Advanced Computing Center , U.S. Department of Energy-National Energy Research Scientific Computing Center , Particle astrophysics research computing center at the University of Maryland , Institute for Cyber-Enabled Research at Michigan State University , and Astroparticle physics computational facility at Marquette University; Belgium – Funds for Scientific Research ( FRS-FNRS and FWO ), FWO Odysseus and Big Science programmes , and Belgian Federal Science Policy Office (Belspo); Germany – Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association , Deutsches Elektronen Synchrotron (DESY) , and High Performance Computing cluster of the RWTH Aachen ; Sweden – Swedish Research Council , Swedish Polar Research Secretariat , Swedish National Infrastructure for Computing (SNIC) , and Knut and Alice Wallenberg Foundation ; Australia – Australian Research Council ; Canada – Natural Sciences and Engineering Research Council of Canada , Calcul Québec , Compute Ontario , Canada Foundation for Innovation , WestGrid , and Compute Canada ; Denmark – Villum Fonden , Danish National Research Foundation (DNRF) , Carlsberg Foundation ; New Zealand – Marsden Fund ; Japan – Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University ; Korea – National Research Foundation of Korea (NRF) ; Switzerland – Swiss National Science Foundation (SNSF) ; United Kingdom – Department of Physics, University of Oxford . United Kingdom – Science and Technology Facilities Council (STFC), part of UK Research and Innovation . Funding Information: The IceCube collaboration acknowledges the significant contributions to this manuscript from Carlos Arg?elles, Austin Schneider, and Benjamin Smithers. We acknowledge the support from the following agencies: USA ? U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), Frontera computing project at the Texas Advanced Computing Center, U.S. Department of Energy-National Energy Research Scientific Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium ? Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany ? Bundesministerium f?r Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen; Sweden ? Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia ? Australian Research Council; Canada ? Natural Sciences and Engineering Research Council of Canada, Calcul Qu?bec, Compute Ontario, Canada Foundation for Innovation, WestGrid, and Compute Canada; Denmark ? Villum Fonden, Danish National Research Foundation (DNRF), Carlsberg Foundation; New Zealand ? Marsden Fund; Japan ? Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea ? National Research Foundation of Korea (NRF); Switzerland ? Swiss National Science Foundation (SNSF); United Kingdom ? Department of Physics, University of Oxford. United Kingdom ? Science and Technology Facilities Council (STFC), part of UK Research and Innovation. Publisher Copyright: © 2021 Elsevier B.V.
PY - 2021/9
Y1 - 2021/9
N2 - We present a high-energy neutrino event generator, called LeptonInjector, alongside an event weighter, called LeptonWeighter. Both are designed for large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event generator allows for quick and flexible simulation of neutrino events within and around the detector volume, and implements the leading Standard Model neutrino interaction processes relevant for neutrino observatories: neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation. In this paper, we discuss the event generation algorithm, the weighting algorithm, and the main functions of the publicly available code, with examples. Program summary: Program Titles: LeptonInjector and LeptonWeighter CPC Library link to program files: https://doi.org/10.17632/662gkpjfd9.1 Developer's repository links: https://github.com/icecube/LeptonInjector and https://github.com/icecube/LeptonWeighter Licensing provisions: GNU Lesser General Public License, version 3. Programming Language: C++11 External Routines: • Boost • HDF5 • nuflux (https://github.com/icecube/nuflux) • nuSQuIDS (https://github.com/arguelles/nuSQuIDS) • Photospline (https://github.com/icecube/photospline) • SuiteSparse (https://github.com/DrTimothyAldenDavis/SuiteSparse) Nature of problem: LeptonInjector: Generate neutrino interaction events of all possible topologies and energies throughout and around a detector volume. LeptonWeighter: Reweight Monte Carlo events, generated by a set of LeptonInjector Generators, to any desired physical neutrino flux or cross section. Solution method: LeptonInjector: Projected ranges of generated leptons and the extent of the detector, in terms of column depth, are used to inject events in and around the detector volume. Event kinematics follow distributions provided in cross section files. LeptonWeighter: Event generation probabilities are calculated for each Generator, which are then combined into a generation weight and used to calculate an overall event weight.
AB - We present a high-energy neutrino event generator, called LeptonInjector, alongside an event weighter, called LeptonWeighter. Both are designed for large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event generator allows for quick and flexible simulation of neutrino events within and around the detector volume, and implements the leading Standard Model neutrino interaction processes relevant for neutrino observatories: neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation. In this paper, we discuss the event generation algorithm, the weighting algorithm, and the main functions of the publicly available code, with examples. Program summary: Program Titles: LeptonInjector and LeptonWeighter CPC Library link to program files: https://doi.org/10.17632/662gkpjfd9.1 Developer's repository links: https://github.com/icecube/LeptonInjector and https://github.com/icecube/LeptonWeighter Licensing provisions: GNU Lesser General Public License, version 3. Programming Language: C++11 External Routines: • Boost • HDF5 • nuflux (https://github.com/icecube/nuflux) • nuSQuIDS (https://github.com/arguelles/nuSQuIDS) • Photospline (https://github.com/icecube/photospline) • SuiteSparse (https://github.com/DrTimothyAldenDavis/SuiteSparse) Nature of problem: LeptonInjector: Generate neutrino interaction events of all possible topologies and energies throughout and around a detector volume. LeptonWeighter: Reweight Monte Carlo events, generated by a set of LeptonInjector Generators, to any desired physical neutrino flux or cross section. Solution method: LeptonInjector: Projected ranges of generated leptons and the extent of the detector, in terms of column depth, are used to inject events in and around the detector volume. Event kinematics follow distributions provided in cross section files. LeptonWeighter: Event generation probabilities are calculated for each Generator, which are then combined into a generation weight and used to calculate an overall event weight.
KW - Event generator
KW - Neutrino generator
KW - Neutrino interaction
KW - Neutrino simulation
KW - Weighting
UR - http://www.scopus.com/inward/record.url?scp=85106564426&partnerID=8YFLogxK
U2 - 10.1016/j.cpc.2021.108018
DO - 10.1016/j.cpc.2021.108018
M3 - Article
AN - SCOPUS:85106564426
VL - 266
JO - Computer Physics Communications
JF - Computer Physics Communications
SN - 0010-4655
M1 - 108018
ER -