Abstract
We herein report the first application of a divalent iron tungstate (FeWO4) nanostructured material, with a wolframite structure, to a Li-ion battery anode. The FeWO4 nanospheres and nanorods were synthesized at 180 °C without any surfactants or templates via a facile hydrothermal process by simply adjusting the pH. The resulting nanopowders were characterized using x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and Brunauer-Emmett-Teller (BET) measurements. Furthermore, we evaluated the Li electroactivity of the FeWO4 nanorods using cyclic voltammetry and observed that their reversible capacity was over 500 mAh g-1 after 20 cycles, which proved much higher than that of graphite-based anodes.
Original language | English |
---|---|
Article number | 465602 |
Journal | Nanotechnology |
Volume | 21 |
Issue number | 46 |
DOIs | |
Publication status | Published - 2010 Nov 19 |
Externally published | Yes |
ASJC Scopus subject areas
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering