Localization and projected role of phosphatidylinositol 4-kinases IIα and IIβ in inositol 1,4,5-trisphosphate-sensitive nucleoplasmic Ca²⁺ store vesicles

Seung Hyun Yoo, Yang Hoon Huh, Seong Kwon Huh, Sei Yoon Chu, Ki Deok Kim, Yong Suk Hur

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Phosphatidylinositol (PI) kinases are key molecules that participate in the phosphoinositide signaling in the cytoplasm. Despite the accumulating evidence that supports the existence and operation of independent PI signaling system in the nucleus, the exact location of the PI kinases inside the nucleus is not well defined. Here we show that PI4-kinases IIα and IIβ, which play central roles in PI(4,5)P2 synthesis and PI signaling, are localized in numerous small nucleoplasmic vesicles that function as inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-sensitive Ca(2+) stores. This is in accord with the past results that showed the localization of PI4(P)5-kinases that are essential in PI(4,5)P2 production and PI(4,5)P2 in nuclear matrix. Along with PI(4,5)P2 that also exists on the nucleoplasmic vesicle membranes, the localization of PI4-kinases IIα and IIβ in the nucleoplasmic vesicles strongly implicates the vesicles to the PI signaling as well as the Ins(1,4,5)P3-depenent Ca(2+) signaling in the nucleus. Accordingly, the nucleoplasmic vesicles indeed release Ca(2+) rapidly in response to Ins(1,4,5)P3. Further, the Ins(1,4,5)P3-induced Ca(2+) release studies suggest that PI4KIIα and IIβ are localized near the Ins(1,4,5)P3 receptor (Ins(1,4,5)P3R)/Ca(2+) channels on the Ca(2+) store vesicle membranes. In view of the widespread presence of the Ins(1,4,5)P3-dependent Ca(2+) store vesicles and the need to fine-control the nuclear Ca(2+) concentrations at multiple sites along the chromatin fibers in the nucleus, the existence of the key PI enzymes in the Ins(1,4,5)P3-dependent nucleoplasmic Ca(2+) store vesicles appears to be in perfect harmony with the physiological roles of the PI kinases in the nucleus.

Original languageEnglish
Pages (from-to)341-351
Number of pages11
JournalNucleus (United States)
Volume5
Issue number4
DOIs
Publication statusPublished - 2014 Jul 1
Externally publishedYes

Fingerprint

Inositol 1,4,5-Trisphosphate
1-Phosphatidylinositol 4-Kinase
Phosphatidylinositols
Phosphotransferases
Nuclear Matrix
Membranes
Chromatin
Cytoplasm

Keywords

  • Ca2+ store
  • chromogranin B
  • IP3
  • IP3 receptor/Ca2+ channel
  • nucleoplasmic vesicle
  • PI4KIIα
  • PI4KIIβ
  • PIP2

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Localization and projected role of phosphatidylinositol 4-kinases IIα and IIβ in inositol 1,4,5-trisphosphate-sensitive nucleoplasmic Ca²⁺ store vesicles. / Yoo, Seung Hyun; Huh, Yang Hoon; Huh, Seong Kwon; Chu, Sei Yoon; Kim, Ki Deok; Hur, Yong Suk.

In: Nucleus (United States), Vol. 5, No. 4, 01.07.2014, p. 341-351.

Research output: Contribution to journalArticle

@article{86ac56a8ffbc4759882c8efba6198843,
title = "Localization and projected role of phosphatidylinositol 4-kinases IIα and IIβ in inositol 1,4,5-trisphosphate-sensitive nucleoplasmic Ca²⁺ store vesicles",
abstract = "Phosphatidylinositol (PI) kinases are key molecules that participate in the phosphoinositide signaling in the cytoplasm. Despite the accumulating evidence that supports the existence and operation of independent PI signaling system in the nucleus, the exact location of the PI kinases inside the nucleus is not well defined. Here we show that PI4-kinases IIα and IIβ, which play central roles in PI(4,5)P2 synthesis and PI signaling, are localized in numerous small nucleoplasmic vesicles that function as inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-sensitive Ca(2+) stores. This is in accord with the past results that showed the localization of PI4(P)5-kinases that are essential in PI(4,5)P2 production and PI(4,5)P2 in nuclear matrix. Along with PI(4,5)P2 that also exists on the nucleoplasmic vesicle membranes, the localization of PI4-kinases IIα and IIβ in the nucleoplasmic vesicles strongly implicates the vesicles to the PI signaling as well as the Ins(1,4,5)P3-depenent Ca(2+) signaling in the nucleus. Accordingly, the nucleoplasmic vesicles indeed release Ca(2+) rapidly in response to Ins(1,4,5)P3. Further, the Ins(1,4,5)P3-induced Ca(2+) release studies suggest that PI4KIIα and IIβ are localized near the Ins(1,4,5)P3 receptor (Ins(1,4,5)P3R)/Ca(2+) channels on the Ca(2+) store vesicle membranes. In view of the widespread presence of the Ins(1,4,5)P3-dependent Ca(2+) store vesicles and the need to fine-control the nuclear Ca(2+) concentrations at multiple sites along the chromatin fibers in the nucleus, the existence of the key PI enzymes in the Ins(1,4,5)P3-dependent nucleoplasmic Ca(2+) store vesicles appears to be in perfect harmony with the physiological roles of the PI kinases in the nucleus.",
keywords = "Ca2+ store, chromogranin B, IP3, IP3 receptor/Ca2+ channel, nucleoplasmic vesicle, PI4KIIα, PI4KIIβ, PIP2",
author = "Yoo, {Seung Hyun} and Huh, {Yang Hoon} and Huh, {Seong Kwon} and Chu, {Sei Yoon} and Kim, {Ki Deok} and Hur, {Yong Suk}",
year = "2014",
month = "7",
day = "1",
doi = "10.4161/nucl.29776",
language = "English",
volume = "5",
pages = "341--351",
journal = "Nucleus",
issn = "0115-2300",
publisher = "Landes Bioscience",
number = "4",

}

TY - JOUR

T1 - Localization and projected role of phosphatidylinositol 4-kinases IIα and IIβ in inositol 1,4,5-trisphosphate-sensitive nucleoplasmic Ca²⁺ store vesicles

AU - Yoo, Seung Hyun

AU - Huh, Yang Hoon

AU - Huh, Seong Kwon

AU - Chu, Sei Yoon

AU - Kim, Ki Deok

AU - Hur, Yong Suk

PY - 2014/7/1

Y1 - 2014/7/1

N2 - Phosphatidylinositol (PI) kinases are key molecules that participate in the phosphoinositide signaling in the cytoplasm. Despite the accumulating evidence that supports the existence and operation of independent PI signaling system in the nucleus, the exact location of the PI kinases inside the nucleus is not well defined. Here we show that PI4-kinases IIα and IIβ, which play central roles in PI(4,5)P2 synthesis and PI signaling, are localized in numerous small nucleoplasmic vesicles that function as inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-sensitive Ca(2+) stores. This is in accord with the past results that showed the localization of PI4(P)5-kinases that are essential in PI(4,5)P2 production and PI(4,5)P2 in nuclear matrix. Along with PI(4,5)P2 that also exists on the nucleoplasmic vesicle membranes, the localization of PI4-kinases IIα and IIβ in the nucleoplasmic vesicles strongly implicates the vesicles to the PI signaling as well as the Ins(1,4,5)P3-depenent Ca(2+) signaling in the nucleus. Accordingly, the nucleoplasmic vesicles indeed release Ca(2+) rapidly in response to Ins(1,4,5)P3. Further, the Ins(1,4,5)P3-induced Ca(2+) release studies suggest that PI4KIIα and IIβ are localized near the Ins(1,4,5)P3 receptor (Ins(1,4,5)P3R)/Ca(2+) channels on the Ca(2+) store vesicle membranes. In view of the widespread presence of the Ins(1,4,5)P3-dependent Ca(2+) store vesicles and the need to fine-control the nuclear Ca(2+) concentrations at multiple sites along the chromatin fibers in the nucleus, the existence of the key PI enzymes in the Ins(1,4,5)P3-dependent nucleoplasmic Ca(2+) store vesicles appears to be in perfect harmony with the physiological roles of the PI kinases in the nucleus.

AB - Phosphatidylinositol (PI) kinases are key molecules that participate in the phosphoinositide signaling in the cytoplasm. Despite the accumulating evidence that supports the existence and operation of independent PI signaling system in the nucleus, the exact location of the PI kinases inside the nucleus is not well defined. Here we show that PI4-kinases IIα and IIβ, which play central roles in PI(4,5)P2 synthesis and PI signaling, are localized in numerous small nucleoplasmic vesicles that function as inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-sensitive Ca(2+) stores. This is in accord with the past results that showed the localization of PI4(P)5-kinases that are essential in PI(4,5)P2 production and PI(4,5)P2 in nuclear matrix. Along with PI(4,5)P2 that also exists on the nucleoplasmic vesicle membranes, the localization of PI4-kinases IIα and IIβ in the nucleoplasmic vesicles strongly implicates the vesicles to the PI signaling as well as the Ins(1,4,5)P3-depenent Ca(2+) signaling in the nucleus. Accordingly, the nucleoplasmic vesicles indeed release Ca(2+) rapidly in response to Ins(1,4,5)P3. Further, the Ins(1,4,5)P3-induced Ca(2+) release studies suggest that PI4KIIα and IIβ are localized near the Ins(1,4,5)P3 receptor (Ins(1,4,5)P3R)/Ca(2+) channels on the Ca(2+) store vesicle membranes. In view of the widespread presence of the Ins(1,4,5)P3-dependent Ca(2+) store vesicles and the need to fine-control the nuclear Ca(2+) concentrations at multiple sites along the chromatin fibers in the nucleus, the existence of the key PI enzymes in the Ins(1,4,5)P3-dependent nucleoplasmic Ca(2+) store vesicles appears to be in perfect harmony with the physiological roles of the PI kinases in the nucleus.

KW - Ca2+ store

KW - chromogranin B

KW - IP3

KW - IP3 receptor/Ca2+ channel

KW - nucleoplasmic vesicle

KW - PI4KIIα

KW - PI4KIIβ

KW - PIP2

UR - http://www.scopus.com/inward/record.url?scp=84964315014&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84964315014&partnerID=8YFLogxK

U2 - 10.4161/nucl.29776

DO - 10.4161/nucl.29776

M3 - Article

C2 - 25482123

AN - SCOPUS:84905089469

VL - 5

SP - 341

EP - 351

JO - Nucleus

JF - Nucleus

SN - 0115-2300

IS - 4

ER -