TY - GEN
T1 - Low-rank representation for multi-center autism spectrum disorder identification
AU - Wang, Mingliang
AU - Zhang, Daoqiang
AU - Huang, Jiashuang
AU - Shen, Dinggang
AU - Liu, Mingxia
N1 - Funding Information:
This study was supported by National Natural Science Foundation of China under Grant 61876082, 61861130366, 61703301, and 61473149.
Publisher Copyright:
© Springer Nature Switzerland AG 2018.
PY - 2018
Y1 - 2018
N2 - Effective utilization of multi-center data for autism spectrum disorder (ASD) diagnosis recently has attracted increasing attention, since a large number of subjects from multiple centers are beneficial for investigating the pathological changes of ASD. To better utilize the multi-center data, various machine learning methods have been proposed. However, most previous studies do not consider the problem of data heterogeneity (e.g., caused by different scanning parameters and subject populations) among multi-center datasets, which may degrade the diagnosis performance based on multi-center data. To address this issue, we propose a multi-center low-rank representation learning (MCLRR) method for ASD diagnosis, to seek a good representation of subjects from different centers. Specifically, we first choose one center as the target domain and the remaining centers as source domains. We then learn a domain-specific projection for each source domain to transform them into an intermediate representation space. To further suppress the heterogeneity among multiple centers, we disassemble the learned projection matrices into a shared part and a sparse unique part. With the shared matrix, we can project target domain to the common latent space, and linearly represent the source domain datasets using data in the transformed target domain. Based on the learned low-rank representation, we employ the k-nearest neighbor (KNN) algorithm to perform disease classification. Our method has been evaluated on the ABIDE database, and the superior classification results demonstrate the effectiveness of our proposed method as compared to other methods.
AB - Effective utilization of multi-center data for autism spectrum disorder (ASD) diagnosis recently has attracted increasing attention, since a large number of subjects from multiple centers are beneficial for investigating the pathological changes of ASD. To better utilize the multi-center data, various machine learning methods have been proposed. However, most previous studies do not consider the problem of data heterogeneity (e.g., caused by different scanning parameters and subject populations) among multi-center datasets, which may degrade the diagnosis performance based on multi-center data. To address this issue, we propose a multi-center low-rank representation learning (MCLRR) method for ASD diagnosis, to seek a good representation of subjects from different centers. Specifically, we first choose one center as the target domain and the remaining centers as source domains. We then learn a domain-specific projection for each source domain to transform them into an intermediate representation space. To further suppress the heterogeneity among multiple centers, we disassemble the learned projection matrices into a shared part and a sparse unique part. With the shared matrix, we can project target domain to the common latent space, and linearly represent the source domain datasets using data in the transformed target domain. Based on the learned low-rank representation, we employ the k-nearest neighbor (KNN) algorithm to perform disease classification. Our method has been evaluated on the ABIDE database, and the superior classification results demonstrate the effectiveness of our proposed method as compared to other methods.
UR - http://www.scopus.com/inward/record.url?scp=85054069825&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-00928-1_73
DO - 10.1007/978-3-030-00928-1_73
M3 - Conference contribution
AN - SCOPUS:85054069825
SN - 9783030009274
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 647
EP - 654
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
A2 - Schnabel, Julia A.
A2 - Davatzikos, Christos
A2 - Alberola-López, Carlos
A2 - Fichtinger, Gabor
A2 - Frangi, Alejandro F.
PB - Springer Verlag
T2 - 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Y2 - 16 September 2018 through 20 September 2018
ER -