Abstract
The performance of solid oxide fuel cells (SOFCs) with thin film electrolytes and electrodes was investigated at a lower operating temperature regime (T ≤ 600°C). 2×2 cm anode-supported unit cells with thin film components of a Ni-yttria-stabilized zirconia (YSZ) composite anode interlayer, a thin (≤ 1μm) YSZ electrolyte, and a lanthanum strontium cobalt oxide cathode were fabricated by using pulsed laser deposition, and the performance of the cells was characterized at the temperature range of 350°C ≤ T ≤ 600°C. Stable open-circuit voltage values above 1 V were successfully obtained with thin film electrolyte cells, which implied that the 1 μm thick electrolyte was fairly dense and gastight. The thin film electrolyte cells exhibited a much more improved cell performance than a thick film (∼8 μm) YSZ electrolyte cell at the low operating temperature regime (350-550°C) and, in some cases, showed better power outputs than other thin film membrane micro-SOFCs.
Original language | English |
---|---|
Pages (from-to) | B1484-B1490 |
Journal | Journal of the Electrochemical Society |
Volume | 156 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2009 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry