TY - JOUR
T1 - Machine learning of molecular electronic properties in chemical compound space
AU - Montavon, Grégoire
AU - Rupp, Matthias
AU - Gobre, Vivekanand
AU - Vazquez-Mayagoitia, Alvaro
AU - Hansen, Katja
AU - Tkatchenko, Alexandre
AU - Müller, Klaus Robert
AU - Anatole Von Lilienfeld, O.
PY - 2013/9
Y1 - 2013/9
N2 - The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a 'quantum machine' is similar, and sometimes superior, to modern quantum-chemical methods - at negligible computational cost.
AB - The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a 'quantum machine' is similar, and sometimes superior, to modern quantum-chemical methods - at negligible computational cost.
UR - http://www.scopus.com/inward/record.url?scp=84885045537&partnerID=8YFLogxK
U2 - 10.1088/1367-2630/15/9/095003
DO - 10.1088/1367-2630/15/9/095003
M3 - Article
AN - SCOPUS:84885045537
SN - 1367-2630
VL - 15
JO - New Journal of Physics
JF - New Journal of Physics
M1 - 095003
ER -