Abstract
Large macromolecular MRI contrast agents with albumin or dendrimer cores are useful for imaging blood vessels. However, their prolonged retention is a major limitation for clinical use. Although smaller dendrimer-based MRI contrast agents are more quickly excreted by the kidneys, they are also able to visualize vascular structures better than Gd-DTPA due to less extravasation. Additionally, unlike Gd-DTPA, they transiently accumulate in renal tubules and thus also can be used to visualize renal structural and functional damage. However, these dendrimer agents are retained in the body for a prolonged time. The purpose of this study was to obtain information from which a macromolecular dendrimer-based MRI contrast agents feasible for use in further clinical studies could be chosen. Six small dendrimer-based MRI contrast agents were synthesized, and their pharmacokinetics, whole-body retention, and dynamic MRI were evaluated in mice to determine an optimal agent in comparison to Gd-[DTPA]-dimeglumine. Diaminobutane (DAB) dendrimer-based agents cleared more rapidly from the body than polyamidoamine (PAMAM) dendrimer-based agents with the same numbers of branches. Smaller dendrimer conjugates were more rapidly excreted from the body than the larger dendrimer conjugates. Since PAMAM-G2, DAB-G3, and DAB-G2 dendrimer-based contrast agents showed relatively rapid excretion, these three conjugates might be acceptable for use in further clinical applications.
Original language | English |
---|---|
Pages (from-to) | 388-394 |
Number of pages | 7 |
Journal | Bioconjugate Chemistry |
Volume | 14 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2003 |
Externally published | Yes |
ASJC Scopus subject areas
- Biotechnology
- Bioengineering
- Biomedical Engineering
- Pharmacology
- Pharmaceutical Science
- Organic Chemistry