Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease

Biao Jie, Daoqiang Zhang, Bo Cheng, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment, MCI), is very important for possible delay and early treatment of the disease. Recently, multi-modality methods have been used for fusing information from multiple different and complementary imaging and non-imaging modalities. Although there are a number of existing multi-modality methods, few of them have addressed the problem of joint identification of disease-related brain regions from multi-modality data for classification. In this paper, we proposed a manifold regularized multi-task learning framework to jointly select features from multi-modality data. Specifically, we formulate the multi-modality classification as a multi-task learning framework, where each task focuses on the classification based on each modality. In order to capture the intrinsic relatedness among multiple tasks (i.e., modalities), we adopted a group sparsity regularizer, which ensures only a small number of features to be selected jointly. In addition, we introduced a new manifold based Laplacian regularization term to preserve the geometric distribution of original data from each task, which can lead to the selection of more discriminative features. Furthermore, we extend our method to the semi-supervised setting, which is very important since the acquisition of a large set of labeled data (i.e., diagnosis of disease) is usually expensive and time-consuming, while the collection of unlabeled data is relatively much easier. To validate our method, we have performed extensive evaluations on the baseline Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) data of Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the effectiveness of the proposed method.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Pages275-283
Number of pages9
Volume8149 LNCS
EditionPART 1
DOIs
Publication statusPublished - 2013 Oct 23
Externally publishedYes
Event16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013 - Nagoya, Japan
Duration: 2013 Sep 222013 Sep 26

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 1
Volume8149 LNCS
ISSN (Print)03029743
ISSN (Electronic)16113349

Other

Other16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013
CountryJapan
CityNagoya
Period13/9/2213/9/26

Fingerprint

Multimodality
Alzheimer's Disease
Feature Selection
Feature extraction
Multi-task Learning
Modality
Neuroimaging
Positron emission tomography
Positron Emission Tomography
Manifold Learning
Geometric distribution
Magnetic resonance imaging
Magnetic Resonance Imaging
Brain
Sparsity
Large Set
Baseline
Regularization
Imaging techniques
Imaging

ASJC Scopus subject areas

  • Computer Science(all)
  • Theoretical Computer Science

Cite this

Jie, B., Zhang, D., Cheng, B., & Shen, D. (2013). Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (PART 1 ed., Vol. 8149 LNCS, pp. 275-283). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 8149 LNCS, No. PART 1). https://doi.org/10.1007/978-3-642-40811-3_35

Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease. / Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 8149 LNCS PART 1. ed. 2013. p. 275-283 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 8149 LNCS, No. PART 1).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Jie, B, Zhang, D, Cheng, B & Shen, D 2013, Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). PART 1 edn, vol. 8149 LNCS, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), no. PART 1, vol. 8149 LNCS, pp. 275-283, 16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013, Nagoya, Japan, 13/9/22. https://doi.org/10.1007/978-3-642-40811-3_35
Jie B, Zhang D, Cheng B, Shen D. Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). PART 1 ed. Vol. 8149 LNCS. 2013. p. 275-283. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); PART 1). https://doi.org/10.1007/978-3-642-40811-3_35
Jie, Biao ; Zhang, Daoqiang ; Cheng, Bo ; Shen, Dinggang. / Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 8149 LNCS PART 1. ed. 2013. pp. 275-283 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); PART 1).
@inproceedings{53b5463487c24bc8b719b701219d0aad,
title = "Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease",
abstract = "Accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment, MCI), is very important for possible delay and early treatment of the disease. Recently, multi-modality methods have been used for fusing information from multiple different and complementary imaging and non-imaging modalities. Although there are a number of existing multi-modality methods, few of them have addressed the problem of joint identification of disease-related brain regions from multi-modality data for classification. In this paper, we proposed a manifold regularized multi-task learning framework to jointly select features from multi-modality data. Specifically, we formulate the multi-modality classification as a multi-task learning framework, where each task focuses on the classification based on each modality. In order to capture the intrinsic relatedness among multiple tasks (i.e., modalities), we adopted a group sparsity regularizer, which ensures only a small number of features to be selected jointly. In addition, we introduced a new manifold based Laplacian regularization term to preserve the geometric distribution of original data from each task, which can lead to the selection of more discriminative features. Furthermore, we extend our method to the semi-supervised setting, which is very important since the acquisition of a large set of labeled data (i.e., diagnosis of disease) is usually expensive and time-consuming, while the collection of unlabeled data is relatively much easier. To validate our method, we have performed extensive evaluations on the baseline Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) data of Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the effectiveness of the proposed method.",
author = "Biao Jie and Daoqiang Zhang and Bo Cheng and Dinggang Shen",
year = "2013",
month = "10",
day = "23",
doi = "10.1007/978-3-642-40811-3_35",
language = "English",
isbn = "9783642408106",
volume = "8149 LNCS",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
number = "PART 1",
pages = "275--283",
booktitle = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
edition = "PART 1",

}

TY - GEN

T1 - Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease

AU - Jie, Biao

AU - Zhang, Daoqiang

AU - Cheng, Bo

AU - Shen, Dinggang

PY - 2013/10/23

Y1 - 2013/10/23

N2 - Accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment, MCI), is very important for possible delay and early treatment of the disease. Recently, multi-modality methods have been used for fusing information from multiple different and complementary imaging and non-imaging modalities. Although there are a number of existing multi-modality methods, few of them have addressed the problem of joint identification of disease-related brain regions from multi-modality data for classification. In this paper, we proposed a manifold regularized multi-task learning framework to jointly select features from multi-modality data. Specifically, we formulate the multi-modality classification as a multi-task learning framework, where each task focuses on the classification based on each modality. In order to capture the intrinsic relatedness among multiple tasks (i.e., modalities), we adopted a group sparsity regularizer, which ensures only a small number of features to be selected jointly. In addition, we introduced a new manifold based Laplacian regularization term to preserve the geometric distribution of original data from each task, which can lead to the selection of more discriminative features. Furthermore, we extend our method to the semi-supervised setting, which is very important since the acquisition of a large set of labeled data (i.e., diagnosis of disease) is usually expensive and time-consuming, while the collection of unlabeled data is relatively much easier. To validate our method, we have performed extensive evaluations on the baseline Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) data of Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the effectiveness of the proposed method.

AB - Accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment, MCI), is very important for possible delay and early treatment of the disease. Recently, multi-modality methods have been used for fusing information from multiple different and complementary imaging and non-imaging modalities. Although there are a number of existing multi-modality methods, few of them have addressed the problem of joint identification of disease-related brain regions from multi-modality data for classification. In this paper, we proposed a manifold regularized multi-task learning framework to jointly select features from multi-modality data. Specifically, we formulate the multi-modality classification as a multi-task learning framework, where each task focuses on the classification based on each modality. In order to capture the intrinsic relatedness among multiple tasks (i.e., modalities), we adopted a group sparsity regularizer, which ensures only a small number of features to be selected jointly. In addition, we introduced a new manifold based Laplacian regularization term to preserve the geometric distribution of original data from each task, which can lead to the selection of more discriminative features. Furthermore, we extend our method to the semi-supervised setting, which is very important since the acquisition of a large set of labeled data (i.e., diagnosis of disease) is usually expensive and time-consuming, while the collection of unlabeled data is relatively much easier. To validate our method, we have performed extensive evaluations on the baseline Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) data of Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the effectiveness of the proposed method.

UR - http://www.scopus.com/inward/record.url?scp=84885829246&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84885829246&partnerID=8YFLogxK

U2 - 10.1007/978-3-642-40811-3_35

DO - 10.1007/978-3-642-40811-3_35

M3 - Conference contribution

SN - 9783642408106

VL - 8149 LNCS

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 275

EP - 283

BT - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

ER -