TY - JOUR
T1 - Measurement and control of ion-doping-induced defects in cadmium telluride films
AU - Kim, Donghwan
AU - Fahrenbruch, Alan L.
AU - Lopez-Otero, Adolfo
AU - Bube, Richard H.
AU - Jones, Kim M.
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 1994
Y1 - 1994
N2 - Homoepitaxial p-type CdTe films were grown by coevaporation of CdTe and phosphorus in vacuum, where the phosphorus vapor was ionized and accelerated toward the substrate. Hole densities up to 2×1017 cm -3 were obtained using an ion energy of 60 eV. Effects of residual ion damage were observed using cross-sectional transmission electron microscopy, etch-pit density, and minority-carrier diffusion length measurements. This ion damage is dependent on both the ion dose and the ion energy. Reducing the ion energy below 60 eV results in lower doping densities, but using electron irradiation and Cd overpressure during deposition makes it possible to achieve equivalent doping levels for 20 eV ions while reducing the ion damage. At an ion energy of 20 eV, using electron irradiation of the growing film, and a 0.2% overpressure of Cd, films with hole density of 1×1017 cm -3 and diffusion length of 0.35 μm were obtained. Photovoltaic behavior of the films deposited in different conditions was tested by fabricating n-CdS/p-CdTe heterojunctions.
AB - Homoepitaxial p-type CdTe films were grown by coevaporation of CdTe and phosphorus in vacuum, where the phosphorus vapor was ionized and accelerated toward the substrate. Hole densities up to 2×1017 cm -3 were obtained using an ion energy of 60 eV. Effects of residual ion damage were observed using cross-sectional transmission electron microscopy, etch-pit density, and minority-carrier diffusion length measurements. This ion damage is dependent on both the ion dose and the ion energy. Reducing the ion energy below 60 eV results in lower doping densities, but using electron irradiation and Cd overpressure during deposition makes it possible to achieve equivalent doping levels for 20 eV ions while reducing the ion damage. At an ion energy of 20 eV, using electron irradiation of the growing film, and a 0.2% overpressure of Cd, films with hole density of 1×1017 cm -3 and diffusion length of 0.35 μm were obtained. Photovoltaic behavior of the films deposited in different conditions was tested by fabricating n-CdS/p-CdTe heterojunctions.
UR - http://www.scopus.com/inward/record.url?scp=0010681404&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0010681404&partnerID=8YFLogxK
U2 - 10.1063/1.356220
DO - 10.1063/1.356220
M3 - Article
AN - SCOPUS:0010681404
VL - 75
SP - 2673
EP - 2679
JO - Journal of Applied Physics
JF - Journal of Applied Physics
SN - 0021-8979
IS - 5
ER -