Measurement of the Splitting Function in pp and Pb-Pb Collisions at sNN =5.02 TeV

CMS Collaboration

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.

Original languageEnglish
Article number142302
JournalPhysical Review Letters
Volume120
Issue number14
DOIs
Publication statusPublished - 2018 Apr 3

Fingerprint

partons
showers
collisions
momentum
substructures
transverse momentum
ionic collisions
center of mass
generators
color
predictions
interactions
energy

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Measurement of the Splitting Function in pp and Pb-Pb Collisions at sNN =5.02 TeV. / CMS Collaboration.

In: Physical Review Letters, Vol. 120, No. 14, 142302, 03.04.2018.

Research output: Contribution to journalArticle

@article{650d180681474cf6b7827bd4123c389c,
title = "Measurement of the Splitting Function in pp and Pb-Pb Collisions at sNN =5.02 TeV",
abstract = "Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.",
author = "{CMS Collaboration} and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and F. Ambrogi and E. Asilar and T. Bergauer and J. Brandstetter and E. Brondolin and M. Dragicevic and J. Er{\"o} and M. Flechl and M. Friedl and R. Fr{\"u}hwirth and Ghete, {V. M.} and J. Grossmann and J. Hrubec and M. Jeitler and A. K{\"o}nig and N. Krammer and I. Kr{\"a}tschmer and D. Liko and T. Madlener and I. Mikulec and E. Pree and N. Rad and H. Rohringer and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and D. Spitzbart and W. Waltenberger and J. Wittmann and Wulz, {C. E.} and M. Zarucki and V. Chekhovsky and V. Mossolov and {Suarez Gonzalez}, J. and {De Wolf}, {E. A.} and {Di Croce}, D. and X. Janssen and J. Lauwers and {Van Haevermaet}, H. and {Van Mechelen}, P. and {Van Remortel}, N. and {Abu Zeid}, S. and F. Blekman and J. D'Hondt and {De Bruyn}, I. and Suyong Choi and Park, {Sung Keun}",
year = "2018",
month = "4",
day = "3",
doi = "10.1103/PhysRevLett.120.142302",
language = "English",
volume = "120",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "14",

}

TY - JOUR

T1 - Measurement of the Splitting Function in pp and Pb-Pb Collisions at sNN =5.02 TeV

AU - CMS Collaboration

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Ambrogi, F.

AU - Asilar, E.

AU - Bergauer, T.

AU - Brandstetter, J.

AU - Brondolin, E.

AU - Dragicevic, M.

AU - Erö, J.

AU - Flechl, M.

AU - Friedl, M.

AU - Frühwirth, R.

AU - Ghete, V. M.

AU - Grossmann, J.

AU - Hrubec, J.

AU - Jeitler, M.

AU - König, A.

AU - Krammer, N.

AU - Krätschmer, I.

AU - Liko, D.

AU - Madlener, T.

AU - Mikulec, I.

AU - Pree, E.

AU - Rad, N.

AU - Rohringer, H.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Spitzbart, D.

AU - Waltenberger, W.

AU - Wittmann, J.

AU - Wulz, C. E.

AU - Zarucki, M.

AU - Chekhovsky, V.

AU - Mossolov, V.

AU - Suarez Gonzalez, J.

AU - De Wolf, E. A.

AU - Di Croce, D.

AU - Janssen, X.

AU - Lauwers, J.

AU - Van Haevermaet, H.

AU - Van Mechelen, P.

AU - Van Remortel, N.

AU - Abu Zeid, S.

AU - Blekman, F.

AU - D'Hondt, J.

AU - De Bruyn, I.

AU - Choi, Suyong

AU - Park, Sung Keun

PY - 2018/4/3

Y1 - 2018/4/3

N2 - Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.

AB - Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.

UR - http://www.scopus.com/inward/record.url?scp=85044988165&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044988165&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.120.142302

DO - 10.1103/PhysRevLett.120.142302

M3 - Article

AN - SCOPUS:85044988165

VL - 120

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 14

M1 - 142302

ER -