Mechanisms and epitaxial relationships between close-packed and BCC lattices in block copolymer solutions

Joona Bang, Timothy P. Lodge

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

The epitaxial relationships between two close-packed lattices (face-centered cubic (fcc) and hexagonally close packed (hcp)) and the body-centered cubic (bcc) lattice of spherical micelles were investigated by small-angle X-ray scattering (SAXS) in two in situ shear cells. Two symmetric poly(styrene-b-isoprene) diblock copolymers with block molecular weights of 8.0 × 103 and 7.0 × 103 g/mol, and 1.5 × 104 and 1.5 × 104 g/mol, respectively, were employed. Thermoreversible fcc → bcc order-order transitions were identified in three styrene-selective solvents, dimethyl phthalate, diethyl phthalate and dibutyl phthalate, and in two isoprene-selective solvents, tetradecane and squalane. Upon shearing an fcc solution, a mixture of highly oriented fcc and hcp crystals was produced, due to the random stacking of the {111} planes along the shear gradient. A bcc phase was grown epitaxially from each hcp/fcc mixture by heating to a temperature within the bcc window without shear. By employing two shear cells, access to scattering along both the gradient axis and the vorticity axis was achieved. This proved crucial to elucidating both the fcc → bcc and hcp → bcc transformations. These mechanisms are related to the bain distortion and the Burgers mechanism, respectively, which are well-established in simple metals. Interestingly, the close-packed planes in fcc/hcp ({111}fcc and {0002}hcp planes) and bcc ({110} planes) were preserved during these transformations, but bcc unit cells with nine distinct orientations were produced. These reflect particular orientation relationships (ORs) between the parent fcc/hcp and the newly formed bcc crystals, which correspond to the Kurdjumov-Sachs, Burgers, Nishiyama-Wassermann, and Pitsche-Schrader ORs that are prevalent in metals.

Original languageEnglish
Pages (from-to)12071-12081
Number of pages11
JournalJournal of Physical Chemistry B
Volume107
Issue number44
Publication statusPublished - 2003 Nov 6
Externally publishedYes

Fingerprint

close packed lattices
body centered cubic lattices
Isoprene
Styrene
block copolymers
Block copolymers
Metals
Dibutyl Phthalate
Crystals
Micelles
Vorticity
X ray scattering
Shearing
phthalates
Molecular weight
Scattering
shear
Heating
cells
gradients

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Cite this

Mechanisms and epitaxial relationships between close-packed and BCC lattices in block copolymer solutions. / Bang, Joona; Lodge, Timothy P.

In: Journal of Physical Chemistry B, Vol. 107, No. 44, 06.11.2003, p. 12071-12081.

Research output: Contribution to journalArticle

@article{a0ba9152e052486097f217591762f832,
title = "Mechanisms and epitaxial relationships between close-packed and BCC lattices in block copolymer solutions",
abstract = "The epitaxial relationships between two close-packed lattices (face-centered cubic (fcc) and hexagonally close packed (hcp)) and the body-centered cubic (bcc) lattice of spherical micelles were investigated by small-angle X-ray scattering (SAXS) in two in situ shear cells. Two symmetric poly(styrene-b-isoprene) diblock copolymers with block molecular weights of 8.0 × 103 and 7.0 × 103 g/mol, and 1.5 × 104 and 1.5 × 104 g/mol, respectively, were employed. Thermoreversible fcc → bcc order-order transitions were identified in three styrene-selective solvents, dimethyl phthalate, diethyl phthalate and dibutyl phthalate, and in two isoprene-selective solvents, tetradecane and squalane. Upon shearing an fcc solution, a mixture of highly oriented fcc and hcp crystals was produced, due to the random stacking of the {111} planes along the shear gradient. A bcc phase was grown epitaxially from each hcp/fcc mixture by heating to a temperature within the bcc window without shear. By employing two shear cells, access to scattering along both the gradient axis and the vorticity axis was achieved. This proved crucial to elucidating both the fcc → bcc and hcp → bcc transformations. These mechanisms are related to the bain distortion and the Burgers mechanism, respectively, which are well-established in simple metals. Interestingly, the close-packed planes in fcc/hcp ({111}fcc and {0002}hcp planes) and bcc ({110} planes) were preserved during these transformations, but bcc unit cells with nine distinct orientations were produced. These reflect particular orientation relationships (ORs) between the parent fcc/hcp and the newly formed bcc crystals, which correspond to the Kurdjumov-Sachs, Burgers, Nishiyama-Wassermann, and Pitsche-Schrader ORs that are prevalent in metals.",
author = "Joona Bang and Lodge, {Timothy P.}",
year = "2003",
month = "11",
day = "6",
language = "English",
volume = "107",
pages = "12071--12081",
journal = "Journal of Physical Chemistry B Materials",
issn = "1520-6106",
publisher = "American Chemical Society",
number = "44",

}

TY - JOUR

T1 - Mechanisms and epitaxial relationships between close-packed and BCC lattices in block copolymer solutions

AU - Bang, Joona

AU - Lodge, Timothy P.

PY - 2003/11/6

Y1 - 2003/11/6

N2 - The epitaxial relationships between two close-packed lattices (face-centered cubic (fcc) and hexagonally close packed (hcp)) and the body-centered cubic (bcc) lattice of spherical micelles were investigated by small-angle X-ray scattering (SAXS) in two in situ shear cells. Two symmetric poly(styrene-b-isoprene) diblock copolymers with block molecular weights of 8.0 × 103 and 7.0 × 103 g/mol, and 1.5 × 104 and 1.5 × 104 g/mol, respectively, were employed. Thermoreversible fcc → bcc order-order transitions were identified in three styrene-selective solvents, dimethyl phthalate, diethyl phthalate and dibutyl phthalate, and in two isoprene-selective solvents, tetradecane and squalane. Upon shearing an fcc solution, a mixture of highly oriented fcc and hcp crystals was produced, due to the random stacking of the {111} planes along the shear gradient. A bcc phase was grown epitaxially from each hcp/fcc mixture by heating to a temperature within the bcc window without shear. By employing two shear cells, access to scattering along both the gradient axis and the vorticity axis was achieved. This proved crucial to elucidating both the fcc → bcc and hcp → bcc transformations. These mechanisms are related to the bain distortion and the Burgers mechanism, respectively, which are well-established in simple metals. Interestingly, the close-packed planes in fcc/hcp ({111}fcc and {0002}hcp planes) and bcc ({110} planes) were preserved during these transformations, but bcc unit cells with nine distinct orientations were produced. These reflect particular orientation relationships (ORs) between the parent fcc/hcp and the newly formed bcc crystals, which correspond to the Kurdjumov-Sachs, Burgers, Nishiyama-Wassermann, and Pitsche-Schrader ORs that are prevalent in metals.

AB - The epitaxial relationships between two close-packed lattices (face-centered cubic (fcc) and hexagonally close packed (hcp)) and the body-centered cubic (bcc) lattice of spherical micelles were investigated by small-angle X-ray scattering (SAXS) in two in situ shear cells. Two symmetric poly(styrene-b-isoprene) diblock copolymers with block molecular weights of 8.0 × 103 and 7.0 × 103 g/mol, and 1.5 × 104 and 1.5 × 104 g/mol, respectively, were employed. Thermoreversible fcc → bcc order-order transitions were identified in three styrene-selective solvents, dimethyl phthalate, diethyl phthalate and dibutyl phthalate, and in two isoprene-selective solvents, tetradecane and squalane. Upon shearing an fcc solution, a mixture of highly oriented fcc and hcp crystals was produced, due to the random stacking of the {111} planes along the shear gradient. A bcc phase was grown epitaxially from each hcp/fcc mixture by heating to a temperature within the bcc window without shear. By employing two shear cells, access to scattering along both the gradient axis and the vorticity axis was achieved. This proved crucial to elucidating both the fcc → bcc and hcp → bcc transformations. These mechanisms are related to the bain distortion and the Burgers mechanism, respectively, which are well-established in simple metals. Interestingly, the close-packed planes in fcc/hcp ({111}fcc and {0002}hcp planes) and bcc ({110} planes) were preserved during these transformations, but bcc unit cells with nine distinct orientations were produced. These reflect particular orientation relationships (ORs) between the parent fcc/hcp and the newly formed bcc crystals, which correspond to the Kurdjumov-Sachs, Burgers, Nishiyama-Wassermann, and Pitsche-Schrader ORs that are prevalent in metals.

UR - http://www.scopus.com/inward/record.url?scp=0345356267&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0345356267&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0345356267

VL - 107

SP - 12071

EP - 12081

JO - Journal of Physical Chemistry B Materials

JF - Journal of Physical Chemistry B Materials

SN - 1520-6106

IS - 44

ER -