Mechanosensitive physiology of chlamydomonas reinhardtii under direct membrane distortion

Seul Ki Min, Gwang Heum Yoon, Jung Hyun Joo, Sang Jun Sim, Hwa Sung Shin

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Cellular membrane distortion invokes variations in cellular physiology. However, lack of an appropriate system to control the stress and facilitate molecular analyses has hampered progress of relevant studies. In this study, a microfluidic system that finely manipulates membrane distortion of Chlamydomonas reinhardtii (C. reinhardtii) was developed. The device facilitated a first-time demonstration that directs membrane distortion invokes variations in deflagellation, cell cycle, and lipid metabolism. C. reinhardtii showed a prolonged G 1 phase with an extended total cell cycle time, and upregulated Mat3 regulated a cell size and cell cycle. Additionally, increased TAG compensated for the loss of cell mass. Overall, this study suggest that cell biology that requires direct membrane distortion can be realized using this system, and the implication of cell cycle with Mat3 expression of C. reinhardtii was first demonstrated. Finally, membrane distortion can be an attractive inducer for biodiesel production since it is reliable and robust.

Original languageEnglish
Article number4675
JournalScientific reports
Volume4
DOIs
Publication statusPublished - 2014 Apr 14

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Mechanosensitive physiology of chlamydomonas reinhardtii under direct membrane distortion'. Together they form a unique fingerprint.

Cite this