Medical image retrieval using multi-graph learning for MCI diagnostic assistance

Yue Gao, Ehsan Adeli-M, Minjeong Kim, Panteleimon Giannakopoulos, Sven Haller, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Citations (Scopus)


Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder that can lead to progressive memory loss and cognition impairment. Therefore, diagnosing AD during the risk stage, a.k.a. Mild Cognitive Impairment (MCI), has attracted ever increasing interest. Besides the automated diagnosis of MCI, it is important to provide physicians with related MCI cases with visually similar imaging data for case-based reasoning or evidence-based medicine in clinical practices. To this end, we propose a multi-graph learning based medical image retrieval technique for MCI diagnostic assistance. Our method is comprised of two stages, the query category prediction and ranking. In the first stage, the query is formulated into a multi-graph structure with a set of selected subjects in the database to learn the relevance between the query subject and the existing subject categories through learning the multi-graph combination weights. This predicts the category that the query belongs to, based on which a set of subjects in the database are selected as candidate retrieval results. In the second stage, the relationship between these candidates and the query is further learned with a new multi-graph, which is used to rank the candidates. The returned subjects can be demonstrated to physicians as reference cases for MCI diagnosing. We evaluated the proposed method on a cohort of 60 consecutive MCI subjects and 350 normal controls with MRI data under three imaging parameters: T1 weighted imaging (T1), Diffusion Tensor Imaging (DTI) and Arterial Spin Labeling (ASL). The proposed method can achieve average 3.45 relevant samples in top 5 returned results, which significantly outperforms the baseline methods compared.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference, Proceedings
EditorsJoachim Hornegger, Alejandro F. Frangi, William M. Wells, Alejandro F. Frangi, Nassir Navab, Joachim Hornegger, Nassir Navab, William M. Wells, William M. Wells, Alejandro F. Frangi, Joachim Hornegger, Nassir Navab
PublisherSpringer Verlag
Number of pages8
ISBN (Print)9783319245706, 9783319245706, 9783319245706
Publication statusPublished - 2015
Externally publishedYes
Event18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015 - Munich, Germany
Duration: 2015 Oct 52015 Oct 9

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Other18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)


Dive into the research topics of 'Medical image retrieval using multi-graph learning for MCI diagnostic assistance'. Together they form a unique fingerprint.

Cite this