Abstract
Microcystin-LR (MC-LR) is a growing issue as it is toxic and difficult to remove in drinking water treatment plants (DWTPs). Mesoporous carbon (MC) is evaluated as an alternative adsorbent for MC-LR removal and compared with three widely-used powdered activated carbons (PACs). MC was more favorable for MC-LR removal than PACs. MC-LR adsorption on MC was a rapid process (k2 = 1.02 × 10−4 g/μg/min) that completed within 15 min, while adsorption on PACs took 60 min. The maximum adsorption capacity of MC-LR was 18,008 μg/g (MC), which was higher than that of the PACs. Two mechanisms were associated with adsorption: the small hydro-dynamic diameter of MC in an aqueous solution increased the instantaneous attraction of MC-LR to its surface, and the numerous mesopores enhanced pore diffusion. The MC could remove MC-LR to meet the drinking water guidance level (1 μg/L) from an the MC-LR concentration range of 5–20 μg/L in drinking water sources, and 10 min of treatment was sufficient to meet this level (MC dose = 20 mg/L). The field-scale DWTP was operated by adding 1 or 5 mg/L MC to the mixing basin, and 49.49% and 74.50% of MC-LR was removed, respectively. Geosmin and 2-methylisoborneol were slightly reduced when 5 mg/L of MC was applied.
Original language | English |
---|---|
Pages (from-to) | 883-891 |
Number of pages | 9 |
Journal | Chemosphere |
Volume | 193 |
DOIs | |
Publication status | Published - 2018 Feb |
Keywords
- Cyanobacterial bloom
- Drinking water treatment plant
- Field-scale study
- Mesoporous carbon
- Microcystin-LR
- Pore diffusion
ASJC Scopus subject areas
- Environmental Engineering
- Environmental Chemistry
- Chemistry(all)
- Pollution
- Health, Toxicology and Mutagenesis