TY - JOUR
T1 - Meta-analysis of genome-wide linkage studies for bone mineral density
AU - Lee, Young Ho
AU - Rho, Young Hee
AU - Choi, Seong Jae
AU - Ji, Jong Dae
AU - Song, Gwan Gyu
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/5
Y1 - 2006/5
N2 - Genome-wide linkage studies have shown several chromosome loci that may harbor genes that regulate bone mineral density (BMD), but results have been inconsistent. A meta-analysis was performed to assess evidence for linkage of BMD across whole genome scan studies. Eleven whole-genome scans of BMD or osteoporosis containing 3,097 families with 12,685 individuals were included in this genome scan meta-analysis (GSMA). For each study, 120 genomic bins of ∼30 cM were defined and ranked according to maximum evidence for linkage within each bin. Bin ranks were weighted and summed across all studies. The summed rank for each bin was assessed empirically for significance using permutation methods. A total of seven bins lie above the 95% confidence level (P=0.05) and one bin was above the 99% confidence level (P=0.01) in the GSMA of eleven linkage studies: bins 16.1 (16pter-16p12.3, Psumrnk <0.01), 3.3 (3p22.2-3p14.1), 1.1 (1pter-1p36.22), 18.2 (18p11.23-18q12.2), 6.3 (6p21.1-6q15), 20.1 (20pter-20p12.3), and 18.1 (18pter-18p11.23). GSMA was performed with seven studies with linkage scores of LOD >1-1.85 for sensitivity test, confirming the linkage on chromosome 16p and 3p and revealing evidence of new linkage in bins 10.2 (10p14-10q11.21) and 22.2 (22q12.3-22pter). In conclusion, the meta-analysis of whole-genome linkage studies of BMD has shown chromosome 16pter-16p12.3 to have the greatest evidence of linkage as well as revealing evidence of linkage in chromosomes 1p, 3p, 6, 10, 18, 20p, and 22q across studies. This data may provide a basis with which to carry out targeted linkage and candidate gene studies particularly in these regions.
AB - Genome-wide linkage studies have shown several chromosome loci that may harbor genes that regulate bone mineral density (BMD), but results have been inconsistent. A meta-analysis was performed to assess evidence for linkage of BMD across whole genome scan studies. Eleven whole-genome scans of BMD or osteoporosis containing 3,097 families with 12,685 individuals were included in this genome scan meta-analysis (GSMA). For each study, 120 genomic bins of ∼30 cM were defined and ranked according to maximum evidence for linkage within each bin. Bin ranks were weighted and summed across all studies. The summed rank for each bin was assessed empirically for significance using permutation methods. A total of seven bins lie above the 95% confidence level (P=0.05) and one bin was above the 99% confidence level (P=0.01) in the GSMA of eleven linkage studies: bins 16.1 (16pter-16p12.3, Psumrnk <0.01), 3.3 (3p22.2-3p14.1), 1.1 (1pter-1p36.22), 18.2 (18p11.23-18q12.2), 6.3 (6p21.1-6q15), 20.1 (20pter-20p12.3), and 18.1 (18pter-18p11.23). GSMA was performed with seven studies with linkage scores of LOD >1-1.85 for sensitivity test, confirming the linkage on chromosome 16p and 3p and revealing evidence of new linkage in bins 10.2 (10p14-10q11.21) and 22.2 (22q12.3-22pter). In conclusion, the meta-analysis of whole-genome linkage studies of BMD has shown chromosome 16pter-16p12.3 to have the greatest evidence of linkage as well as revealing evidence of linkage in chromosomes 1p, 3p, 6, 10, 18, 20p, and 22q across studies. This data may provide a basis with which to carry out targeted linkage and candidate gene studies particularly in these regions.
KW - Bone mineral density
KW - Linkage
KW - Meta-analysis
KW - Osteoporosis
UR - http://www.scopus.com/inward/record.url?scp=33744990856&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33744990856&partnerID=8YFLogxK
U2 - 10.1007/s10038-006-0390-9
DO - 10.1007/s10038-006-0390-9
M3 - Article
C2 - 16534542
AN - SCOPUS:33744990856
SN - 1434-5161
VL - 51
SP - 480
EP - 486
JO - Journal of Human Genetics
JF - Journal of Human Genetics
IS - 5
ER -