Meta-modulation Network for Domain Generalization in Multi-site fMRI Classification

Jaein Lee, Eunsong Kang, Eunjin Jeon, Heung Il Suk

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In general, it is expected that large amounts of functional magnetic resonance imaging (fMRI) would be helpful to deduce statistically meaningful biomarkers or to build generalized predictive models for brain disease diagnosis. However, the site-variation inherent in rs-fMRI hampers the researchers to use the entire samples collected from multiple sites because it involves the unfavorable heterogeneity in data distribution, thus negatively impact on identifying biomarkers and making a diagnostic decision. To alleviate this challenging multi-site problem, we propose a novel framework that adaptively calibrates the site-specific features into site-invariant features via a novel modulation mechanism. Specifically, we take a learning-to-learn strategy and devise a novel meta-learning model for domain generalization, i.e., applicable to samples from unseen sites without retraining or fine-tuning. In our experiments over the ABIDE dataset, we validated the generalization ability of the proposed network by showing improved diagnostic accuracy in both seen and unseen multi-site samples.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings
EditorsMarleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Essert
PublisherSpringer Science and Business Media Deutschland GmbH
Pages500-509
Number of pages10
ISBN (Print)9783030872397
DOIs
Publication statusPublished - 2021
Event24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: 2021 Sep 272021 Oct 1

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12905 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period21/9/2721/10/1

Keywords

  • Autism spectrum disorder
  • Domain generalization
  • Meta-learning
  • Modulation network
  • Multi-site
  • Resting-state functional magnetic resonance imaging

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Meta-modulation Network for Domain Generalization in Multi-site fMRI Classification'. Together they form a unique fingerprint.

Cite this