Metal contamination and solid phase partitioning of metals in urban roadside sediments

Pyeong Koo Lee, Youn Hee Yu, Seong Taek Yun, Bernhard Mayer

Research output: Contribution to journalArticle

85 Citations (Scopus)

Abstract

This study was undertaken to assess the anthropogenic impact on metal concentrations of urban roadside sediments (N = 633) in Seoul city, Korea and to estimate the potential mobility of selected metals (Zn, Cu, Pb, Cr, Ni, and Cd) using sequential extraction. Comparison of metal concentrations in roadside sediments with mean background values in sediments collected from first- or second-order streams in Korea shows that Zn, Cu and Pb are most affected by anthropogenic inputs. The 206Pb/207Pb ratios of roadside sediments (range = 1.1419-1.1681; mean 1.1576 ± 0.0068) suggest that Pb is mainly derived from industrial sources rather than from leaded gasoline. A five-step sequential extraction of roadside sediments showed that Zn, Cd and to a lesser degree Ni occur predominantly in the carbonate bound fraction, while Pb is highest in the reducible fraction, Cu in the organic fraction, and Cr in the residual fraction. It was found that the concentrations in the readily available exchangeable fraction were generally low for most metals examined, except for Ni whose exchangeable fraction was appreciable (average 15.2%). Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Zn > Ni > Cd > Pb > Cu > Cr. As potential changes of redox state and pH may remobilize the metals bound to carbonates, reducible, and/or organic matter, and may release and flush them through drain networks into streams, careful monitoring of environmental conditions appears to be very important. With respect to ecotoxicity, it is apparent the Zn and Cu pollution is of particular concern in Seoul city.

Original languageEnglish
Pages (from-to)672-689
Number of pages18
JournalChemosphere
Volume60
Issue number5
DOIs
Publication statusPublished - 2005 Jul 1

Fingerprint

Roadsides
Sediments
Contamination
partitioning
Metals
metal
Carbonates
sediment
carbonate
contamination
Biological materials
drain
Gasoline
Pollution
environmental conditions
organic matter
pollution
Monitoring
monitoring

Keywords

  • Contamination
  • Lead isotopes
  • Metals
  • Partitioning
  • Urban roadside sediments

ASJC Scopus subject areas

  • Environmental Chemistry
  • Environmental Science(all)

Cite this

Metal contamination and solid phase partitioning of metals in urban roadside sediments. / Lee, Pyeong Koo; Yu, Youn Hee; Yun, Seong Taek; Mayer, Bernhard.

In: Chemosphere, Vol. 60, No. 5, 01.07.2005, p. 672-689.

Research output: Contribution to journalArticle

Lee, Pyeong Koo ; Yu, Youn Hee ; Yun, Seong Taek ; Mayer, Bernhard. / Metal contamination and solid phase partitioning of metals in urban roadside sediments. In: Chemosphere. 2005 ; Vol. 60, No. 5. pp. 672-689.
@article{359e354b580f47d0ab9c648751919f8e,
title = "Metal contamination and solid phase partitioning of metals in urban roadside sediments",
abstract = "This study was undertaken to assess the anthropogenic impact on metal concentrations of urban roadside sediments (N = 633) in Seoul city, Korea and to estimate the potential mobility of selected metals (Zn, Cu, Pb, Cr, Ni, and Cd) using sequential extraction. Comparison of metal concentrations in roadside sediments with mean background values in sediments collected from first- or second-order streams in Korea shows that Zn, Cu and Pb are most affected by anthropogenic inputs. The 206Pb/207Pb ratios of roadside sediments (range = 1.1419-1.1681; mean 1.1576 ± 0.0068) suggest that Pb is mainly derived from industrial sources rather than from leaded gasoline. A five-step sequential extraction of roadside sediments showed that Zn, Cd and to a lesser degree Ni occur predominantly in the carbonate bound fraction, while Pb is highest in the reducible fraction, Cu in the organic fraction, and Cr in the residual fraction. It was found that the concentrations in the readily available exchangeable fraction were generally low for most metals examined, except for Ni whose exchangeable fraction was appreciable (average 15.2{\%}). Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Zn > Ni > Cd > Pb > Cu > Cr. As potential changes of redox state and pH may remobilize the metals bound to carbonates, reducible, and/or organic matter, and may release and flush them through drain networks into streams, careful monitoring of environmental conditions appears to be very important. With respect to ecotoxicity, it is apparent the Zn and Cu pollution is of particular concern in Seoul city.",
keywords = "Contamination, Lead isotopes, Metals, Partitioning, Urban roadside sediments",
author = "Lee, {Pyeong Koo} and Yu, {Youn Hee} and Yun, {Seong Taek} and Bernhard Mayer",
year = "2005",
month = "7",
day = "1",
doi = "10.1016/j.chemosphere.2005.01.048",
language = "English",
volume = "60",
pages = "672--689",
journal = "Chemosphere",
issn = "0045-6535",
publisher = "Elsevier Limited",
number = "5",

}

TY - JOUR

T1 - Metal contamination and solid phase partitioning of metals in urban roadside sediments

AU - Lee, Pyeong Koo

AU - Yu, Youn Hee

AU - Yun, Seong Taek

AU - Mayer, Bernhard

PY - 2005/7/1

Y1 - 2005/7/1

N2 - This study was undertaken to assess the anthropogenic impact on metal concentrations of urban roadside sediments (N = 633) in Seoul city, Korea and to estimate the potential mobility of selected metals (Zn, Cu, Pb, Cr, Ni, and Cd) using sequential extraction. Comparison of metal concentrations in roadside sediments with mean background values in sediments collected from first- or second-order streams in Korea shows that Zn, Cu and Pb are most affected by anthropogenic inputs. The 206Pb/207Pb ratios of roadside sediments (range = 1.1419-1.1681; mean 1.1576 ± 0.0068) suggest that Pb is mainly derived from industrial sources rather than from leaded gasoline. A five-step sequential extraction of roadside sediments showed that Zn, Cd and to a lesser degree Ni occur predominantly in the carbonate bound fraction, while Pb is highest in the reducible fraction, Cu in the organic fraction, and Cr in the residual fraction. It was found that the concentrations in the readily available exchangeable fraction were generally low for most metals examined, except for Ni whose exchangeable fraction was appreciable (average 15.2%). Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Zn > Ni > Cd > Pb > Cu > Cr. As potential changes of redox state and pH may remobilize the metals bound to carbonates, reducible, and/or organic matter, and may release and flush them through drain networks into streams, careful monitoring of environmental conditions appears to be very important. With respect to ecotoxicity, it is apparent the Zn and Cu pollution is of particular concern in Seoul city.

AB - This study was undertaken to assess the anthropogenic impact on metal concentrations of urban roadside sediments (N = 633) in Seoul city, Korea and to estimate the potential mobility of selected metals (Zn, Cu, Pb, Cr, Ni, and Cd) using sequential extraction. Comparison of metal concentrations in roadside sediments with mean background values in sediments collected from first- or second-order streams in Korea shows that Zn, Cu and Pb are most affected by anthropogenic inputs. The 206Pb/207Pb ratios of roadside sediments (range = 1.1419-1.1681; mean 1.1576 ± 0.0068) suggest that Pb is mainly derived from industrial sources rather than from leaded gasoline. A five-step sequential extraction of roadside sediments showed that Zn, Cd and to a lesser degree Ni occur predominantly in the carbonate bound fraction, while Pb is highest in the reducible fraction, Cu in the organic fraction, and Cr in the residual fraction. It was found that the concentrations in the readily available exchangeable fraction were generally low for most metals examined, except for Ni whose exchangeable fraction was appreciable (average 15.2%). Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Zn > Ni > Cd > Pb > Cu > Cr. As potential changes of redox state and pH may remobilize the metals bound to carbonates, reducible, and/or organic matter, and may release and flush them through drain networks into streams, careful monitoring of environmental conditions appears to be very important. With respect to ecotoxicity, it is apparent the Zn and Cu pollution is of particular concern in Seoul city.

KW - Contamination

KW - Lead isotopes

KW - Metals

KW - Partitioning

KW - Urban roadside sediments

UR - http://www.scopus.com/inward/record.url?scp=20444477534&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=20444477534&partnerID=8YFLogxK

U2 - 10.1016/j.chemosphere.2005.01.048

DO - 10.1016/j.chemosphere.2005.01.048

M3 - Article

C2 - 15963806

AN - SCOPUS:20444477534

VL - 60

SP - 672

EP - 689

JO - Chemosphere

JF - Chemosphere

SN - 0045-6535

IS - 5

ER -