TY - JOUR
T1 - Metformin regulates glucose transporter 4 (GLUT4) translocation through AMP-activated protein kinase (AMPK)-mediated Cbl/CAP signaling in 3T3-L1 preadipocyte cells
AU - Lee, Jung Ok
AU - Lee, Soo Kyung
AU - Kim, Ji Hae
AU - Kim, Nami
AU - You, Ga Young
AU - Moon, Ji Wook
AU - Kim, Su Jin
AU - Park, Sun Hwa
AU - Kim, Hyeon Soo
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2012/12/28
Y1 - 2012/12/28
N2 - Metformin is a leading oral anti-diabetes mellitus medication and is known to stimulate GLUT4 translocation. However, the mechanism by which metformin acts is still largely unknown. Here, we showed that short time treatment with metformin rapidly increased phosphorylation of Cbl in an AMP-activated protein kinase (AMPK)-dependent fashion in 3T3-L1 preadipocytes. Metformin also increased phosphorylation of Src in an AMPK-dependent manner. Src inhibition blocked metformin-mediated Cbl phosphorylation, suggesting that metformin stimulates AMPK-Src-Cbl axis pathway. In addition, long term treatment with metformin stimulated the expression of Cbl-associated protein (CAP) mRNA and protein. Long term treatment with metformin stimulated phosphorylation of c-Jun N-terminal kinase (JNK) and its downstream molecule c-Jun, which is a critical molecule for CAP transcription. Knockdown of AMPK and JNK blocked metformin-induced expression of CAP, implying that metformin stimulates AMPK-JNK-CAP axis pathway. Moreover, AMPK knockdown attenuated metformin-induced Cbl/CAP multicomplex formation, which is critical for GLUT4 translocation. A colorimetric absorbance assay demonstrated that metformin-induced translocation of GLUT4 was suppressed in CAP or Cbl knockdown cells. Furthermore, the promoter activity of CAP was increased by metformin in an AMPK/JNK-dependent fashion. In summary, these results demonstrate that metformin modulates GLUT4 translocation by regulating Cbl and CAP signals via AMPK.
AB - Metformin is a leading oral anti-diabetes mellitus medication and is known to stimulate GLUT4 translocation. However, the mechanism by which metformin acts is still largely unknown. Here, we showed that short time treatment with metformin rapidly increased phosphorylation of Cbl in an AMP-activated protein kinase (AMPK)-dependent fashion in 3T3-L1 preadipocytes. Metformin also increased phosphorylation of Src in an AMPK-dependent manner. Src inhibition blocked metformin-mediated Cbl phosphorylation, suggesting that metformin stimulates AMPK-Src-Cbl axis pathway. In addition, long term treatment with metformin stimulated the expression of Cbl-associated protein (CAP) mRNA and protein. Long term treatment with metformin stimulated phosphorylation of c-Jun N-terminal kinase (JNK) and its downstream molecule c-Jun, which is a critical molecule for CAP transcription. Knockdown of AMPK and JNK blocked metformin-induced expression of CAP, implying that metformin stimulates AMPK-JNK-CAP axis pathway. Moreover, AMPK knockdown attenuated metformin-induced Cbl/CAP multicomplex formation, which is critical for GLUT4 translocation. A colorimetric absorbance assay demonstrated that metformin-induced translocation of GLUT4 was suppressed in CAP or Cbl knockdown cells. Furthermore, the promoter activity of CAP was increased by metformin in an AMPK/JNK-dependent fashion. In summary, these results demonstrate that metformin modulates GLUT4 translocation by regulating Cbl and CAP signals via AMPK.
UR - http://www.scopus.com/inward/record.url?scp=84871755225&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871755225&partnerID=8YFLogxK
U2 - 10.1074/jbc.M112.361386
DO - 10.1074/jbc.M112.361386
M3 - Article
C2 - 23135276
AN - SCOPUS:84871755225
VL - 287
SP - 44121
EP - 44129
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 53
ER -