TY - JOUR
T1 - Microalgal fuels
T2 - Promising energy reserves for the future
AU - Sirohi, Ranjna
AU - Il Choi, Hong
AU - Sim, Sang Jun
N1 - Funding Information:
The authors are grateful for the funds provided by Korea Carbon to X R&D Center (2020M3H7A1098295) and the National Research Foundation (NRF-2019R1A2C3009821 / NRF-2020R1A5A1018052) of the Ministry of Science and ICT of Korea.
Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2022/3/15
Y1 - 2022/3/15
N2 - Traditional methods of fuel production and consumption result in the emission of huge quantities of CO2, leading to a rise in the Earth's surface temperature. This has driven the scientific community to look for alternate sources of fuels that could fulfil the current energy demands, while reducing CO2 emissions. Microalgae have garnered substantial interest as an excellent biological resource for biorefineries, given their abilities to accumulate diverse CO2-derived bioproducts, such as various forms of fuels, chemical building blocks, and pharmaceuticals; this could be interpreted as an efficient method for storing solar energy by biological means. Microalgal biomass is free from ethical debates because it does not compete with food production for fertile arable lands and clean water for their cultivation, which makes the entire process highly sustainable. Microalgal biomass-derived fuels for each end-use can be obtained via several processes, including drying, chemical, and physical lipid-extraction methods, anaerobic digestion, and thermochemical treatments (e.g., pyrolysis, torrefaction, hydrothermal carbonization, liquefaction, and gasification). This review aims to critically explore the process layouts, their operation conditions (including catalysts), and expected outputs related to fuel production. It also provides a comprehensive overview of the most notable and promising strategies for the producing energy resources from various species of microalgae. Pretreatment of microalgal biomass, followed by bioconversion strategies, such as hydrothermal carbonization and photo-fermentation, along with genomics-based approaches, can lead to higher yields of microalga-derived solid, liquid, and gaseous fuels.
AB - Traditional methods of fuel production and consumption result in the emission of huge quantities of CO2, leading to a rise in the Earth's surface temperature. This has driven the scientific community to look for alternate sources of fuels that could fulfil the current energy demands, while reducing CO2 emissions. Microalgae have garnered substantial interest as an excellent biological resource for biorefineries, given their abilities to accumulate diverse CO2-derived bioproducts, such as various forms of fuels, chemical building blocks, and pharmaceuticals; this could be interpreted as an efficient method for storing solar energy by biological means. Microalgal biomass is free from ethical debates because it does not compete with food production for fertile arable lands and clean water for their cultivation, which makes the entire process highly sustainable. Microalgal biomass-derived fuels for each end-use can be obtained via several processes, including drying, chemical, and physical lipid-extraction methods, anaerobic digestion, and thermochemical treatments (e.g., pyrolysis, torrefaction, hydrothermal carbonization, liquefaction, and gasification). This review aims to critically explore the process layouts, their operation conditions (including catalysts), and expected outputs related to fuel production. It also provides a comprehensive overview of the most notable and promising strategies for the producing energy resources from various species of microalgae. Pretreatment of microalgal biomass, followed by bioconversion strategies, such as hydrothermal carbonization and photo-fermentation, along with genomics-based approaches, can lead to higher yields of microalga-derived solid, liquid, and gaseous fuels.
KW - Gaseous fuels
KW - Liquid fuels
KW - Microalgae
KW - Solid fuels
KW - Thermochemical conversion
UR - http://www.scopus.com/inward/record.url?scp=85121103866&partnerID=8YFLogxK
U2 - 10.1016/j.fuel.2021.122841
DO - 10.1016/j.fuel.2021.122841
M3 - Article
AN - SCOPUS:85121103866
SN - 0016-2361
VL - 312
JO - Fuel
JF - Fuel
M1 - 122841
ER -