@article{e8f043b6c6ae4a8d80f92ecb21817c50,
title = "Mie-coupled bound guided states in nanowire geometric superlattices",
abstract = "All-optical operation holds promise as the future of computing technology, and key components include miniaturized waveguides (WGs) and couplers that control narrow bandwidths. Nanowires (NWs) offer an ideal platform for nanoscale WGs, but their utility has been limited by the lack of a comprehensive coupling scheme with band selectivity. Here, we introduce a NW geometric superlattice (GSL) that allows narrow-band guiding in Si NWs through coupling of a Mie resonance with a bound-guided state (BGS). Periodic diameter modulation creates a Mie-BGS-coupled excitation that manifests as a scattering dark state with a pronounced scattering dip in the Mie resonance. The frequency of the coupled mode, tunable from the visible to near-infrared, is determined by the pitch of the GSL. Using a combined GSL-WG system, we demonstrate spectrally selective guiding and optical switching and sensing at telecommunication wavelengths, highlighting the potential to use NW GSLs for the design of on-chip optical components.",
author = "Seokhyoung Kim and Kim, {Kyoung Ho} and Hill, {David J.} and Park, {Hong Gyu} and Cahoon, {James F.}",
note = "Funding Information: This research was supported by the National Science Foundation (NSF) through Grant DMR-1555001. S.K. acknowledges a Kwanjeong Scholarship, D.J.H. acknowledges a NSF graduate research fellowships, and J.F.C. acknowledges a Packard Fellowship for Science and Engineering. H.-G.P. acknowledges support by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Nos. 2009-0081565 and 2017R1A4A1015426). This work made use of instrumentation at the Chapel Hill Analytical and Nanofabrication Laboratory (CHANL), a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), which is supported by the NSF (ECCS-1542015) as part of the National Nanotechnology Coordinated Infrastructure (NNCI). Funding Information: This research was supported by the National Science Foundation (NSF) through Grant DMR-1555001. S.K. acknowledges a Kwanjeong Scholarship, D.J.H. acknowledges a NSF graduate research fellowships, and J.F.C. acknowledges a Packard Fellowship for Science and Engineering. H.-G.P. acknowledges support by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Nos. 2009-0081565 and 2017R1A4A1015426). This work made use of instrumentation at the Chapel Hill Analytical and Nanofabrication Laboratory (CHANL), a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), which is supported by the NSF (ECCS-1542015) as part of the National Nanotechnology Coordinated Infrastructure (NNCI). We thank Christopher W. Pinion for initial discussions on numerical calculations. Publisher Copyright: {\textcopyright} 2018 The Author(s).",
year = "2018",
month = dec,
day = "1",
doi = "10.1038/s41467-018-05224-2",
language = "English",
volume = "9",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",
}