Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception

Yongwoo Jang, Minseok Kim, Sun Wook Hwang

Research output: Contribution to journalReview article

Abstract

Arachidonic acid-derived prostaglandins not only contribute to the development of inflammation as intercellular pro-inflammatory mediators, but also promote the excitability of the peripheral somatosensory system, contributing to pain exacerbation. Peripheral tissues undergo many forms of diseases that are frequently accompanied by inflammation. The somatosensory nerves innervating the inflamed areas experience heightened excitability and generate and transmit pain signals. Extensive studies have been carried out to elucidate how prostaglandins play their roles for such signaling at the cellular and molecular levels. Here, we briefly summarize the roles of arachidonic acid-derived prostaglandins, focusing on four prostaglandins and one thromboxane, particularly in terms of their actions on afferent nociceptors. We discuss the biosynthesis of the prostaglandins, their specific action sites, the pathological alteration of the expression levels of related proteins, the neuronal outcomes of receptor stimulation, their correlation with behavioral nociception, and the pharmacological efficacy of their regulators. This overview will help to a better understanding of the pathological roles that prostaglandins play in the somatosensory system and to a finding of critical molecular contributors to normalizing pain.

Original languageEnglish
Article number30
JournalJournal of Neuroinflammation
Volume17
Issue number1
DOIs
Publication statusPublished - 2020 Jan 22

    Fingerprint

Keywords

  • DRG neuron
  • Inflammation
  • Pain
  • Prostaglandin
  • Signal transduction

ASJC Scopus subject areas

  • Neuroscience(all)
  • Immunology
  • Neurology
  • Cellular and Molecular Neuroscience

Cite this