TY - JOUR
T1 - Molecular structures of flavonoid co-formers for cocrystallization with carbamazepine
AU - Lee, Cheong Cheon
AU - Hee Lim, Ju
AU - Young Cho, A.
AU - Yoon, Woojin
AU - Yun, Hoseop
AU - Won Kang, Jeong
AU - Lee, Jonghwi
N1 - Funding Information:
This study was financially supported by National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT(MSIT) (NRF-2019R1I1A2A01061397, NRF-2020M3D1A2101800, and Engineering Research Center 2021R1A5A6002853).
Publisher Copyright:
© 2022 The Korean Society of Industrial and Engineering Chemistry
PY - 2022
Y1 - 2022
N2 - Flavonoids have numerous beneficial effects on human health, such as antioxidant capacity and immune-boosting effects, which make them attractive cocrystal formers for drugs. Previously, a co-crystal between carbamazepine (CBZ) and naringenin, a flavonoid, was discovered, but no understanding on the requirements of cocrystal formers was assessed. Herein, the structural requirement of flavonoids cocrystallization with CBZ was examined using eight different natural flavonoids with planar and bent structures and 0–4 phenolic groups including the naringenin. The flavonoids without double bonds in their heterocyclic rings (F1, P2, and N3) formed cocrystals with monoclinic unit cells and a 1:1 CBZ to flavonoid molecular ratio, whereas the flavonoids with double bonds (F1d, C2d, and A3d) did not form cocrystals. F1, P2, and N3 had geometrically bent structures, which enabled the formation of cocrystals. The phenolic groups of flavonoids play an essential role in cocrystal formation with CBZ, undergoing strong intermolecular interactions. The flavonoid with no phenolic group, F0, could not form a cocrystal. For CF1, CP2, and CN3, the melting temperature, packing coefficient, and hydrogen bonding energy of the cocrystals increased as the number of phenolic groups increased. These results confirm that the phenolic groups and molecular geometry of flavonoids are critical cocrystal forming factors.
AB - Flavonoids have numerous beneficial effects on human health, such as antioxidant capacity and immune-boosting effects, which make them attractive cocrystal formers for drugs. Previously, a co-crystal between carbamazepine (CBZ) and naringenin, a flavonoid, was discovered, but no understanding on the requirements of cocrystal formers was assessed. Herein, the structural requirement of flavonoids cocrystallization with CBZ was examined using eight different natural flavonoids with planar and bent structures and 0–4 phenolic groups including the naringenin. The flavonoids without double bonds in their heterocyclic rings (F1, P2, and N3) formed cocrystals with monoclinic unit cells and a 1:1 CBZ to flavonoid molecular ratio, whereas the flavonoids with double bonds (F1d, C2d, and A3d) did not form cocrystals. F1, P2, and N3 had geometrically bent structures, which enabled the formation of cocrystals. The phenolic groups of flavonoids play an essential role in cocrystal formation with CBZ, undergoing strong intermolecular interactions. The flavonoid with no phenolic group, F0, could not form a cocrystal. For CF1, CP2, and CN3, the melting temperature, packing coefficient, and hydrogen bonding energy of the cocrystals increased as the number of phenolic groups increased. These results confirm that the phenolic groups and molecular geometry of flavonoids are critical cocrystal forming factors.
KW - Antioxidant
KW - Cocrystal
KW - Flavonoid
KW - Pharmaceutical cocrystal
KW - Polyphenol
UR - http://www.scopus.com/inward/record.url?scp=85143881393&partnerID=8YFLogxK
U2 - 10.1016/j.jiec.2022.11.015
DO - 10.1016/j.jiec.2022.11.015
M3 - Article
AN - SCOPUS:85143881393
SN - 1226-086X
JO - Journal of Industrial and Engineering Chemistry
JF - Journal of Industrial and Engineering Chemistry
ER -