TY - JOUR
T1 - Monitoring the distribution of prompt gamma rays in boron neutron capture therapy using a multiple-scattering Compton camera
T2 - A Monte Carlo simulation study
AU - Lee, Taewoong
AU - Lee, Hyounggun
AU - Lee, Wonho
N1 - Funding Information:
This work was supported by a Korea University Grant ( K1508361 ).
PY - 2015/10/21
Y1 - 2015/10/21
N2 - This study evaluated the use of Compton imaging technology to monitor prompt gamma rays emitted by 10B in boron neutron capture therapy (BNCT) applied to a computerized human phantom. The Monte Carlo method, including particle-tracking techniques, was used for simulation. The distribution of prompt gamma rays emitted by the phantom during irradiation with neutron beams is closely associated with the distribution of the boron in the phantom. Maximum likelihood expectation maximization (MLEM) method was applied to the information obtained from the detected prompt gamma rays to reconstruct the distribution of the tumor including the boron uptake regions (BURs). The reconstructed Compton images of the prompt gamma rays were combined with the cross-sectional images of the human phantom. Quantitative analysis of the intensity curves showed that all combined images matched the predetermined conditions of the simulation. The tumors including the BURs were distinguishable if they were more than 2 cm apart.
AB - This study evaluated the use of Compton imaging technology to monitor prompt gamma rays emitted by 10B in boron neutron capture therapy (BNCT) applied to a computerized human phantom. The Monte Carlo method, including particle-tracking techniques, was used for simulation. The distribution of prompt gamma rays emitted by the phantom during irradiation with neutron beams is closely associated with the distribution of the boron in the phantom. Maximum likelihood expectation maximization (MLEM) method was applied to the information obtained from the detected prompt gamma rays to reconstruct the distribution of the tumor including the boron uptake regions (BURs). The reconstructed Compton images of the prompt gamma rays were combined with the cross-sectional images of the human phantom. Quantitative analysis of the intensity curves showed that all combined images matched the predetermined conditions of the simulation. The tumors including the BURs were distinguishable if they were more than 2 cm apart.
KW - Born uptake regions (BURs)
KW - Boron neutron capture therapy (BNCT)
KW - Multiple scattering Compton camera (MSCC)
KW - Prompt gamma-ray
UR - http://www.scopus.com/inward/record.url?scp=84955260873&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84955260873&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2015.07.038
DO - 10.1016/j.nima.2015.07.038
M3 - Article
AN - SCOPUS:84955260873
SN - 0168-9002
VL - 798
SP - 135
EP - 139
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
ER -