Mono-dispersed DDR zeolite particles by seeded growth and their CO2, N2, and H2O adsorption properties

Eunjoo Kim, Kyunghwan Lim, Taehee Lee, Kyoung Su Ha, Doug Young Han, Jaewook Nam, Nakwon Choi, Il Joo Cho, Alex C K Yip, Jungkyu Choi

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

All-silica DDR (decadodecasil 3R, Si-DDR) zeolites with a pore size of 0.36 × 0.44 nm2 are highly desirable for separating CO2 (0.33 nm) from N2 (0.364 nm) on the basis of the size difference. Despite their potential as CO2 separators, the synthetic protocols that allow for the mono-dispersed DDR zeolite particles have not been systematically investigated. Here, we found that a seeded growth of irregular Si-DDR particles, obtained by non-seeded growth, resulted in mono-dispersed, diamond-like Si-DDR particles. Regardless of the origin of seeds, the size of the Si-DDR particles was decreased with increasing seed amount. Adsorption isotherms of CO2, N2, and H2O, the three main components in the flue gas from coal-fired power plants, in Si-DDR particles and the corresponding heats of adsorption (∼25–27, ∼15–22, and ∼32–40 kJ·mol−1, respectively) were comparable and in good agreement with the literature data. The resulting CO2/N2 ideal sorption and permeation selectivities were estimated to be ∼15.3–18.0 and ∼7.7–9.0 at 303 K, respectively, indicating that Si-DDR zeolites can serve as adsorbents and membranes for CO2/N2 separations. In addition, we demonstrated that Al atoms could be incorporated into the DDR framework via seeded growth. The adsorption of H2O depends considerably on the concentration of defects (mainly OH groups) present in the Si-DDR framework and more strongly on Al species incorporated into the DDR framework.

Original languageEnglish
Pages (from-to)876-888
Number of pages13
JournalChemical Engineering Journal
Volume306
DOIs
Publication statusPublished - 2016 Dec 15

Keywords

  • Adsorption
  • All-silica DDR (Si-DDR)
  • CO/N separation
  • DDR catalysts
  • Hydrophobicity
  • Seeded growth

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Mono-dispersed DDR zeolite particles by seeded growth and their CO<sub>2</sub>, N<sub>2</sub>, and H<sub>2</sub>O adsorption properties'. Together they form a unique fingerprint.

  • Cite this