Motion-selective coherent population trapping for subrecoil cooling of optically trapped atoms outside the Lamb-Dicke regime

Hyun Gyung Lee, Sooyoung Park, Meung Ho Seo, D. Cho

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

We propose a scheme that combines velocity-selective coherent population trapping (CPT) and Raman sideband cooling (RSC) for subrecoil cooling of optically trapped atoms outside the Lamb-Dicke regime. This scheme is based on an inverted Y configuration in an alkali-metal atom. It consists of a Λ formed by two Raman transitions between the ground hyperfine levels and the D transition, allowing RSC along two paths and formation of a CPT dark state. Using the state-dependent difference in vibration frequency of the atom in a circularly polarized trap, we can tune the Λ to make only the motional ground state a CPT dark state. We call this scheme motion-selective coherent population trapping (MSCPT). We write the master equations for RSC and MSCPT and solve them numerically for a Rb87 atom in a one-dimensional optical lattice when the Lamb-Dicke parameter is 1. Although MSCPT reaches the steady state slowly compared with RSC, the former consistently produces colder atoms than the latter. The numerical results also show that subrecoil cooling by MSCPT outside the Lamb-Dicke regime is possible under a favorable, yet experimentally feasible, condition. We explain this performance quantitatively by calculating the relative darkness of each motional state. Finally, we discuss the application of the MSCPT scheme to an optically trapped diatomic polar molecule whose Stark shift and vibration frequency exhibit large variations depending on the rotational quantum number.

Original languageEnglish
Article number023324
JournalPhysical Review A
Volume106
Issue number2
DOIs
Publication statusPublished - 2022 Aug

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Motion-selective coherent population trapping for subrecoil cooling of optically trapped atoms outside the Lamb-Dicke regime'. Together they form a unique fingerprint.

Cite this